Seat No.	:	
----------	---	--

NB-133

December-2015 M.Sc., Sem. III 501: Chemistry

501 : Chemistry (Organic : Natural Products and Bio-molecules)

Tim	e: 3	Hour	: s]	[Max. Marks:	70
Instructions :			(1) (2)	All questions are compulsory. Figures to right indicate full marks.	
1.	Ans	wer tl	he fol	lowing:	
	(A)	(i)		w sugar residue in anthocyanin is being determined? Explain presence l position of sugar residue in anthocyanin with suitable illustrations.	4
		(ii)		cuss spectral properties of porphyrin. Give one synthesis of dipyrrylthene.	3
				OR	
		(i)		ve classification of pigment based on their structural unit. Give synthesis to-3, 4-trimethoxy acetophenone from veratric acid.	4
		(ii)		ring evidences prove the presence of porphyrin nucleus in chlorophyll derive conclusion.	3
	(B)	(i)	Dis	cuss oxidation and reduction reaction of bilirubin and derive conclusion.	4
		(ii)	Giv	ve synthesis of kryptopyrrole and phyllopyrole.	3
				OR	
		(i)		cuss the degradation of haemin under different conditions. Give thesis of homopyrrole carboxylic acid.	4
		(ii)	Giv	ve synthesis of querecetin.	3
2.	Ans	wer tl	he fol	lowing:	
	(A)	(i)	Wh	w would you obtain α -code methine and β -codemethine from morphine? at happens when morphenol is (a) Fused with KOH (b) Reduced with lium and ethanol?	
		(ii)	Giv	ve synthesis of alpha tocopherol.	3
				OR	
NB-	133			1 P.T.	Ο.

		(i)	Give evidence for the presence of acetamido group and size of ring B in colchicine.	4
		(ii)	Give synthesis of vitamin-C.	3
	(B)	(i)	Give oxidation reaction of quinine. Prove the structure of quininic acid with its synthesis.	4
		(ii)	Give evidence for nature of nucleus and side chain in biotin.	3
			OR	
		(i)	Discuss the nature of nucleus and position of carboxyl group in reserpic acid.	4
		(ii)	Sodium sulphite cleavage of vitamin-Bl gives an acid [A] and base [B]. Discuss structure of any one of them.	3
3.	Ans	wer th	ne following:	
	(A)	(i)	What is Blanc's rule? Give evidence for the size of ring A, B and D in cholesterol.	4
		(ii)	Classify sex hormones giving one example of each. Give synthesis of progesterone.	3
			OR	
		(i)	Discuss the position of hydroxyl group and double bond in cholesterol.	4
		(ii)	What are corticoids? Give partial synthesis of cortisone.	3
	(B)	(i)	Discuss the position of angular methyl group in cholesterol.	4
		(ii)	Give evidence for the nature and position of double bond in ergosterol.	3
			OR	
		(i)	Prove that bile acids are hydroxy derivatives of 5- β cholanic acid or 5- α cholanic acid. Explain the biological importance of bile acid.	4
		(ii)	Explain the chemical relationship and their inter-conversion among oestrone, oestriol and oestradiol.	3
4.	Ans	wer th	ne following :	
	(A)	(i)	Give degradation product of gibberic acid and derive conclusion.	4
		(ii)	Give synthesis of farnesol.	3
			OR	
		(i)	Prove the structure of allogiberic acid analytically.	4
		(ii)	Give synthesis of retene.	3
NB-	133		2	

	(B)	(i)	How will you prove the position of double bond in abeitic acid?	4
		(ii)	Discuss the ozonolysis of squalene.	3
		()	OR	
		(i)	Discuss the ozonolysis and nature of double bond in zingebarine.	4
		(ii)	Discuss the oxidation of retene and derive conclusion.	3
5.	Ans	wer th	ne following:	14
	(i)	Give	name and structure of product when flavone is boiled with alchoholic KOH.	
	(ii)		name and structure of the product when pionidine chloride is reacted with am hydroxide and KOH.	
	(iii)	Give	name and structure of any two flavone.	
	(iv)	Givi	ng necessary reaction discuss Weerman test.	
	(v)	Give	classification of vitamins according to their solubility.	
	(vi)	Givi	ng reason show colchicine is an alkaloid.	
	(vii)	Give	structures of codeine and thebaine.	
	(viii)) Give	structural formula of any two corticoids.	
	(ix)		e the structure of product when steroids are dehydrogenated with selenium at $^{\circ}\text{C}$ & 420 $^{\circ}\text{C}$.	
	(x)	Wha	t is barbier-Wieland degradation?	
	(xi)	Writ	e the general formulae of bicyclic and tetracyclic terpenoid.	
	(xii)	Writ	e isoprene rule & special isoprene rule.	
	(xiii)) How	will you detect isopropenyl & methyl ketone group in terpenoid?	
	(viv)	Shov	w how I -ascorbic acid is converted to dehydro I -ascorbic acid	

NB-133 3

NB-133 4