\qquad

JD-123

January-2016

B.C.A., Sem.- I
 CC-104 : Basic of Mathematics

Time : 3 Hours]
[Max. Marks: 70

1. (a) In a survey of 1000 persons it was found that 280 read magazine A, 300 read magazine $\mathrm{B}, 420$ read magazine $\mathrm{C}, 80$ read magazines A and $\mathrm{B}, 100$ read magazines A and C, 50 read magazines B and C and 30 read all three magazines. Find.
(i) How many read at least one of these magazines?
(ii) How many read none of three magazines?
(iii) How many read magazine A only?
(iv) How many read magazine A and B but not C ?

OR

$A=\{1,2,4,5\}, B=\{2,3,5,6\}, C=\{4,5,6,7\}$. Verify
(i) $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cap(\mathrm{A}-\mathrm{C})$
(ii) $\mathrm{A} \cap(\mathrm{B} \Delta \mathrm{C})=(\mathrm{A}-\mathrm{B}) \Delta(\mathrm{A}-\mathrm{C})$
(b) If $\mathrm{f}: \mathrm{R}-\{1\} \rightarrow \mathrm{R}, \mathrm{f}(x)=\frac{1-x}{1+x}$, then prove that
(i) $\mathrm{f}(x)+\mathrm{f}\left(\frac{1}{x}\right)=0$
(ii) $\mathrm{f}(\mathrm{f}(x))=x$

OR

(i) If $\mathrm{f}(x)=2 x^{2}-5 x+4$, for what value of x is $2 \mathrm{f}(x)=\mathrm{f}(2 x)$?
(ii) Define: function, identity function, modulus function.
2. (a) Solve the following system of equations using matrix inversion method.

$$
2 x-2 y+z=1, x+2 y+2 z=2,2 x+y-2 z=7
$$

OR

If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 5 & 6 \\ 0 & 1 & 2\end{array}\right], B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 0 & 8 & 7 \\ 3 & 1 & 2\end{array}\right]$, then verify
(i) $(A+B)^{T}=A^{T}+B^{T}$
(ii) $(\mathrm{AB})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$
(b) Find the inverse of the matrix $\mathrm{A}=\left[\begin{array}{lll}2 & 3 & 1 \\ 0 & 5 & 6 \\ 1 & 1 & 2\end{array}\right]$.

OR

Find x, if $\left[\begin{array}{ll}1-1 & x\end{array}\right]\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=0$.
3. (a) Attempt the following :
(i) Which point on the X -axis is equidistant from $(5,9)$ and $(-4,6)$?
(ii) Find the co-ordinate of the points which divide AB in the ratio $2: 3$ internally from A where the co-ordinates of A and B are $(2,-1)$ and $(-3,4)$ respectively.

OR

Attempt the following :
(i) Find the area of $\triangle \mathrm{ABC}$ whose vertices are $\mathrm{A}(-8,-2), \mathrm{B}(-4,-6)$ and C ($-1,5$).
(ii) Find the equation of a line passing through the point $(1,4)$ and the sum of the intercepts on the axis is 10 .
(b) Attempt the following :
(i) Find the equation of the line passing through $(-3,2)$ and making an angle of 45° with the line $3 x-4 y+2=0$.
(ii) Find the equation of the line parallel to $2 x+3 y+7=0$ and passing through the point $(1,2)$.

OR

Attempt the following :
(i) Find the equation of the line passing through the midpoint of the line segment joining $(2,4)$ and $(4,2)$ and perpendicular to $5 x-2 y-7=0$.
(ii) Find the value of x if the distance between $(x,-1)$ and $(3,2)$ be 5 units.
4. (a) Find the derivatives of the following :
(i) $\mathrm{e}^{x}+x^{\mathrm{e}}$
(ii) $\log \left(2+3 x+4 x^{2}\right)$
(iii) $\frac{x^{2}+1}{x^{2}-1}$
(iv) $\log x \cdot \sin x$

OR

Attempt the following :
(i) $\int \mathrm{e}^{2 x-3} \mathrm{~d} x$
(ii) $\int\left(3-2 x+x^{4}\right) d x$
(iii) $\int \frac{1}{x+3} \mathrm{dx}$
(iv) $\int(5 x-6)^{20} \mathrm{~d} x$
(b) Evaluate the following :
(i) $\lim _{x \rightarrow 4} \frac{x^{2}-3 x-4}{x^{2}-2 x-8}$
(ii) $\lim _{x \rightarrow 3} \frac{\sqrt{x+2}-\sqrt{5}}{x-3}$

OR

Attempt the following :
(i) $\mathrm{f}(x)=\frac{2 x^{2}-x-1}{x-1}, x \neq 1$

$$
=\mathrm{K}+2, \quad x=1
$$

For what value of K the function is continuous at $x=1$?
(ii) Evaluate : $\lim _{x \rightarrow 0} \frac{2^{3 x}-1}{x}$
5. Do is directed.
(1) If $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A}$, then $\mathrm{A}=\mathrm{B}$ (True/False).
(2) No. of subsets of Set $A=\{\phi\}$ is \qquad .
(3) If $\mathrm{f}(x)=\frac{x}{x-1}, \mathrm{f}(3)-\mathrm{f}(2)=$ \qquad -
(4) For matrix A and B $(A B)^{T}=A^{T} B^{T}$ (True/False)
(5) If $\left[\begin{array}{cc}3 & 2 x \\ 1-3 x & 2\end{array}\right]$ is symmetric matrix, then $x=$ \qquad .
(6) For 2×2 matrix if the determinant is zero, then A^{-1} does not exists. (True/False)
(7) The distance of a point (x, y) from the origin is \qquad -
(8) Slope a line $2 x-y+5=0$ is \qquad _.
(9) Equation of a line having slope 2 and passing through $(1,2)$ is \qquad .
(10) Equation of a line having x-intercept 3 and y-intercept is 2 is \qquad .
(11) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\mathrm{a}^{x}\right)=$ \qquad —.
(12) $\lim \frac{x^{\mathrm{n}}-\mathrm{a}^{\mathrm{n}}}{x-\mathrm{a}}=$ \qquad .
(13) $\int \sqrt{x} \mathrm{~d} x=$ \qquad .
(14) $\int \cos x \mathrm{~d} x=$ \qquad .

