Seat No. : _____

NE-130 December-2015 M.Sc., 5th Year (CA & IT) Data Compression

Time : 3 Hours]

[Max. Marks: 100

8

1.	(a)	Define Data Compression.	Give examples of compressed data formats.	2

- (b) Define any **eight** :
 - (i) Lossless Compression
 - (ii) Lossy Compression
 - (iii) Fidelity
 - (iv) Modeling
 - (v) Residual
 - (vi) Entropy
 - (vii) Unique Decodability
 - (viii) Dangling suffix
 - (ix) Coding
- (c) Check that code $\{0,01,11\}$ or $\{0,01,10\}$ which is one is unique decodable. Why? 5
- (d) Find entropy for source {A, B, C, D, E} for probability model P(A) = 0.31, P(B) = 0.24, P(C) = P(E) = 0.02, P(D) = 0.41. 5

2. (a) Attempt any **two** :

- (i) Find Golomb code for integers n = 0, 13 & 1 which is parameterized by m = 3
- (ii) Given the alphabet {A, C, N} with model Fx(C) = 0.25, Fx(A) = 0.501, Fx(N) = 1 where Fx is cumulative frequency of the symbol. Encode sequence "CAN" using Arithmetic coding with scaling and generate Tag (Binary conversion of Tag is not required).
- (iii) Find Minimum Variance Huffman coding for alphabet $A=\{a_1, a_2, a_3, a_4, a_5\}$ with probabilities $P(a_1) = 0.5$, $P(a_3) = 0.05$, $P(a_5) = 0.25$, $P(a_2) = P(a_4) = 0.10$.

NE-130

P.T.O.

10

- (b) Attempt any **one** :
 - (i) Given the alphabet {a, b,..., z} with size 26, encode the sequence "deeper" using Adaptive Huffman Coding.
 - (ii) Given the alphabet {a, b..., j, k, 1} with size 12, decode the sequence "000 101 001100 000 000 001 010 100 010 00" using Adaptive Huffman Coding.
- 3. Do as Directed :

(a)	Decode the sequence 1 2 3 4 5 6 8 10 7 4 using LZW method with initial	
	dictionary as 1-j, 2-o, 3-e, 4-y, 5-n	6
(b)	Give count array for -1 , 0, 1 and 2 order context, for the sequence "neondon" to	
	be encoded using PPM algorithm.	6
(c)	Encode sequence "e r r o r o r r o t o r" using LZ77 dictionary technique with	
	search buffer and look ahead buffer size as 4.	4
(d)	Encode "queudequeque" using LZ78.	4

4. Do as Directed :

(a) Explain any two probability models commonly used in the design and analy				
		lossy compression system.	6	
	(b)	Explain any two Squared Error Measures of distortion.		
	(c)	Explain Rate Distortion Theory.		
	(d)	Explain "Silence Compression".	3	
	(e)	Explain Nyquist Theorem. According to Nyquist Theory, how to achieved superior Quality of sound. Explain with example.	2	
	(a)	Explain Midrise and Midtread quantizer.	2	
	(b)	Which Quantization is better ? Scalar or Vector ? Justify your answer.	2	
	(c)	Draw diagram of Vector Quantization Procedure. Why Vector quantization encoding		
		requires more resources compared to decoding.	3	
	(d)	Quantize the sequence 1.3, 6, 3.45, 6.7, 2.9, 9.9 into a 3 level uniform quantizer.	3	
	(e)	What is quantization ? Write a note on uniform and non uniform quantization.	5	
	(f)	Explain Differential coding schemes.	5	

NE-130

5.