1

P.T.O.

4

6

4

CC-304 : Operations Research and Q.T. [Max. Marks: 70 Discuss various types of Modelling in O.R. (a) OR What is Linear Programming ? Give its mathematical formulation. Also write its uses. (b) Solve the following LPP by graphical method : Z = 2.3x + 2yMaximize $30x + 20y \le 7200$, Subject to, $12x \le 2400$, $x + y \le 275$, $x, y \ge 0$ OR Solve following LPP by Graphical method : Minimize Z = 3x + 2ySubject to, $2x + 4y \ge 10$, $4x + 2y \ge 10$, $y \ge 4$, $x, y \ge 0$ Write dual of the following problem : (c) Minimize Z = 600x + 400ySubject to, $300x + 100y \ge 2400$, $100x + 100y \ge 1600$, $200x + 600y \ge 4800$, $x, y \ge 0$ OR Write dual of the following problem : Minimize Z = 5x + 7ySubject to, $x + y \le 4$, $3x + 8y \le 24$, $5x + 2y \ge 10$, $x, y \ge 0$

November-2013 B.B.A. (Sem.-V)

NL-106

Time : 3 Hours]

1.

Seat No. : _____

2. (a) What is Transportation Problem ? Why it is called special case of LPP ?

OR

Write short note on North-West Corner method.

(b) Find initial solution of following problem by least cost method :

	\mathbf{W}	Χ	Y	Z	Supply		
Α	50	150	70	60	50		
В	80	70	90	10	60		
С	15	87	79	81	40		
Demand	20	70	50	10	-		
OR							

Find initial solution of following problem by Vogel's Approximation method :

	Х	Y	Z	Supply
Α	5	1	7	50
В	6	4	6	80
С	3	2	5	15
Demand	75	20	50	-

(c) Check whether the given solution is optimum or not. If it is not then find it

	D ₁	D ₂	D ₃	D ₄	D ₅	
01	12	4 8	39	4	4 0	
02	6 6	7	10	1 7	0	
03	5	9	8 7	6	0	
	OR					

Obtain optimum solution of following problem :

	Ι	II	III	Supply
1	7	12	9	16
2	8	10	6	10
3	10	9	12	12
Demand	8	11	19	

3. (a) Give difference between PERT & CPM.

OR

Give advantages and limitations of PERT.

(b) Draw PERT diagram from the following information. Also find critical path.

Activity :	1 - 2	1 – 3	2 - 5	3 – 5	5-6		
Optimistic time :	7	7	8	10	10		
Most likely time:	12	10	13	12	14		
Pessimistic time :	13	12	15	22	18		
OR							

NL-106

2

5

4

5

5

5

4

Prepare a network and determine critical path.

Activity :	Α	В	C	D	Е	F
Preceeding Activity	—	Α	В	—	D	C, E
Estimate Time :	2	3	4	5	2	5

(c) Find Free, Total and Independent Float time for each activity.

Activity	:	1 - 2	1 – 3	2-3	2 - 4	3-4	4-5
Duration	:	20	25	10	12	6	10
	0	R					

Find EST, LST, EFT & LFT for each activity.

Activity :	1 – 2	1 – 3	2 - 3	2-4	3 – 4	4 – 5
Time :	5	7	3	4	3	5

4. (a) What is Assignment Problem ? Represent it as a Linear Programming Problem. **4 OR**

What is Game Problem ? What are the assumptions made in Game theory ?

(b) Find optimal assignment of the following problem :

	Р	Q	R	S	
A	11	12	13	14	
B	14	15	16	17	
С	15	16	17	18	
D	18	17	16	15	
		OR			

Solve the following assignment problem :

	Х	Y	Z
A	16	20	20
B	12	13	16
С	18	20	15
D	16	14	17

(c) Solve the following payoff Matrix, determine optimal strategies and value of the game :

Player B
Player A
$$\begin{bmatrix} 1 & 7 \\ 6 & 2 \end{bmatrix}$$

OR
Solve the following game : $\begin{bmatrix} 9 & 8 & -7 \\ 3 & -6 & 4 \\ 6 & 7 & -7 \end{bmatrix}$.
3

5

5

- 5. Answer the following questions :
 - (1) Define Linear Programming Problem.
 - (2) Write difference between solution and feasible solution.
 - (3) Define Objective Function.
 - (4) What do you mean by unbounded solution ?
 - (5) What do you mean by balanced transportation problem ?
 - (6) What is basic condition for applying MODI method ?
 - (7) _____ is taken into consideration for allocation in LCM of solving transportation problem.
 - (8) For a transportation matrix of order 4×3 , how many no. of occupied cells for non-degenerate solution ?
 - (9) What is the value of decision variable X_{ij} in Assignment problem ?
 - (10) What is demand of each destinations in Assignment problem ?
 - (11) What do you mean by unbalanced Assignment Problem ?
 - (12) Explain LFT with respect to PERT.
 - (13) In PERT the project is divided into different _____, while in CPM it is divided into different _____.
 - (14) What is Saddle Point ?