Seat No. : \qquad

NI-102

November-2013
B.Sc. Sem.-III

ELE-202 : Electronics
Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) All questions carry equal marks.
(2) Symbols used have their meanings as usual.

1. (a) If a T section is interposed between a generator having internal impedance $\mathrm{Z}_{1 \mathrm{i}}$ and a load impedance $Z_{2 i}$, explain image impedance matching giving suitable circuit and show
$\mathrm{Z}_{1 \mathrm{i}}=\sqrt{\mathrm{Z}_{1 \mathrm{oc}} \mathrm{Z}_{1 \mathrm{sc}}}$ and $\mathrm{Z}_{2 \mathrm{i}}=\sqrt{\mathrm{Z}_{2 \mathrm{oc}} \mathrm{Z}_{2 \mathrm{sc}}}$
(b) Explain how magnetically coupled circuit can be replaced by equivalent impedance transforming T network.

OR

(a) Explain reactance L-section for impedance transformation assuming $\mathrm{R}<\mathrm{R}_{\mathrm{in}}$ and show values of C and L for desired $R_{i n}$ for L-section are
$\mathrm{C}=\frac{1}{\mathrm{WR}_{\mathrm{in}}} \sqrt{\frac{\mathrm{R}_{\mathrm{in}}}{\mathrm{R}}-1}$ and $\mathrm{L}=\frac{\mathrm{R}}{\mathrm{W}} \sqrt{\frac{\mathrm{R}_{\mathrm{in}}}{\mathrm{R}}-1}$
$R_{\text {in }}$ is desired load for generator
(b) With necessary circuit explain transformation of impedances using iron core transformer using ideal transformer properties and show,
$Z_{1 \text { in }}+\left(R_{L}+j W L_{L}\right) \frac{L_{1}}{L_{2}}$ and hence $Z_{1 \text { in }}+a^{2} Z_{L}$.
$a=$ turns ratio $=\frac{N_{1}}{N_{2}}$
2. (a) What do you understand by wave shaping ? Explain :
(i) Linear wave shaping
(ii) Non-linear wave shaping
(b) Give high pass R.C. circuit response to square wave input.
(c) A 10 KHz square wave having $\mathrm{T}=5 \mu \mathrm{sec}$ and overall amplitude of 10 volt is applied to a differentiating circuit in which $\mathrm{R}=10 \mathrm{k} \Omega$ and $\mathrm{C}=1000 \mu \mathrm{~F}$. Determine the tip values $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{1}{ }^{1}$ and $\mathrm{V}_{2}{ }^{1}$ of the output wave form.

OR

(a) What do you understand by filters? Explain :
(i) neper and
(ii) decibel
(b) Suppose output of a network is 2 watt and under changed condition the output is 3.2 watt then by how many decibels will the output change to ?
(c) What is known as symmetrical network ? If a symmetrical T network is terminated into image impedance where characteristic impedance is Z_{o} then show
$Z_{\mathrm{OT}}=\sqrt{\mathrm{Z}_{1} \mathrm{Z}_{2}\left(1+\frac{\mathrm{Z}_{1}}{4 \mathrm{Z}_{2}}\right)}$
3. (a) Give circuit diagram and truth table for full adder.
(b) Give brief account on Adder-subtractor with necessary diagram.

OR

(a) Give mono-stable operation of timer 555 with functional diagram and explain using timing pulses.

In a monostable multibrator $\mathrm{R}=100 \mathrm{k} \Omega$ and the time delay $\mathrm{T}=100 \mathrm{~ms}$. Calculate value of C .
(b) Give circuit diagram for pulse forming circuit using two monostables 74123. If input to the circuit is 100 KHz square wave and it is desired to produce a $1 \mu \mathrm{~s}$ pulse $2 \mu \mathrm{~s}$ after every positive transition of the input then find out proper timing capacitor values. Given that both timing resistors are set at 500Ω.
4. (a) Give traditional block diagram of a computer and explain function of each block in brief.
(i) instruction
(ii) machine language
(iii) assembly language
(iv) compiler
(v) interpreter
(vi) operating system
(vii) assembler

OR

(a) Give five functional categories of 8085 instructions.
(b) Give example of each
(i) 1-byte instruction
(ii) 2-byte instruction and
(iii) 3-byte instruction
5. Answer the following questions in one sentence :
(1) What is meaning of positive edge triggered circuit ?
(2) What is dynamic input indicator?
(3) What is meaning of hysteresis when applied to Schmitt trigger?
(4) What is duty cycle?
(5) What are the modes of operation of a timer ?
(6) What is full form of ALU ?
(7) How many bits are contained in a byte?
(8) What is cut off frequency in terms of R and C in case of high pass $\mathrm{R}-\mathrm{C}$ circuit ?
(9) What is a square wave?
(10) Give full form of BCD.
(11) Is it true that instruction has two parts op-code and operands?
(12) What do you understand by impedance transformation?
(13) What is Weber-Fechner law?
(14) Two voltages or currents differ by on neper when one of them is e times as large as the other. Is it true?

