Seat No. : _____

NH-101

November-2013

B.Sc. Sem.-III (CBCS)

STA-201 : Statistics

Time: 3 Hours]

[Max. Marks: 70

Instruction : All questions carry equal marks.

1. (a) Define random variable, distribution function and state and prove properties of distribution function.

OR

Let X be a continuous random variable with p.d.f. f(x) and y = g(x) is strictly monotonic function. If g(x) is differentiable for all x then prove that p.d.f. $h(\cdot)$ of y is given by $h_y(y) = f(x) \left| \frac{dy}{dx} \right|$.

(b) Show that geometric mean G of the distribution with p.d.f.

 $f(x) = 6(2 - x) (x - 1); 1 \le x \le 2$ is given by 6 *l*n (16G) = 19.

OR

A function f(x) is given as under

$$f(x) = x \quad \text{if } \quad 0 \le x \le 1$$
$$= \frac{3-x}{4} \quad \text{if } \quad 1 < x \le 3$$
$$= 0 \qquad \text{o.w.}$$

Can f(x) be p.d.f ? If so obtain its distribution function. Hence find $P_r\left(\frac{1}{2} < x < \frac{3}{2}\right)$. Also find mean.

2. (a) Define expectation of a r.v. and state and prove addition theorem of expectation of two continuous random variables. If r.v. X and Y are independent then prove that $E(XY) = E(X) \cdot E(Y)$.

OR

Define cumulant generating function and explain effect of change of origin and scale on cumulants. Also prove that the r^{th} cumulant of the sum of the independent random variables is equal to the sum of r^{th} cumulants of the individual variables.

(b) If X is a random variable having cumulants k_r ; (r = 1, 2, ...) given by $k_r = (r - 1) ! pa^{-r} (p, a > 0)$ then find m.g.f. of X. If rth moment about origin of a r.v. X is r ! then find m.g.f. of X.

OR

Find the expected value of $3x^2 - 1$ if the p.d.f. of X is

$$f(x) = 2x$$
 ; $0 < x < 1$

= 0; o.w.

If X and Y are independent variates with mean 10 and 20 and variances 2 and 3 respectively then find Var(3x + 4y).

3. (a) If $X \sim B(n, p)$ then obtain the expression for r^{th} factorial moment about origin. Hence find first three moments about origin and central moments.

OR

Stating the conditions obtain probability function of Poisson distribution from Binomial distribution.

(b) If X ~ P(1) then show that mean deviation about mean is $\frac{2}{C}$ times the standard deviation.

OR

Obtain recurrence relation for the central moments of Binomial distribution.

4. (a) Define Beta distribution of second kind. Also find rth moment about origin, mean, variance and harmonic mean for Beta distribution of second kind.

OR

If $X_1, X_2, ..., X_k$ are independent random variables having an exponential distribution with parameter Q_i ; i = 1, 2, ..., k then obtain the distribution of $Y = \min \{X_1, X_2, ..., X_k\}$.

(b) If X has a rectangular distribution in (0, 1) then find the probability function of $Y = -2 \log_e X$. Also find E(Y).

OR

Find m.g.f. about origin for a rectangular distribution with p.d.f.

$$f(x) = \frac{1}{2a}$$
; $-a < x < a$
= 0; o.w.

Also show that even ordered central moments are given by $\mu_{2n} = \frac{a^{2n}}{2n+1}$.

5. (1) What is the relation between $M_x(t)$ and $M_{\underline{x}-\mu}(t)$?

(2) If function f(x) defined as

$$f(x) = (x)$$
; $-1 \le x \le 1$
= 0; o.w.

a p.d.f. of a random variable x. Give reason.

- (3) Define two dimensional random variable.
- (4) If the p.d.f. of a random variable *x* is

$$f(x) = ke^{-2x}$$
; $x \ge 0$
= 0; o.w.

then find the value of k.

- (5) What is the relation between mean and harmonic mean of Beta distribution of second kind ?
- (6) Define independence of two random variables.
- (7) If $X \sim B$ (8, 0.3) then what is the m.g.f. of X?
- (8) What is the recurrence relation for central moments of Poisson distribution ?
- (9) Write m.g.f. of exponential distribution and find its mean.
- (10) If X has rectangular distribution in (a, b) with mean = 1 and variance = $\frac{4}{3}$ then find a and b.