Seat No. : _____

P.T.O.

NA-101

November-2013

S.Y.B.C.A. Sem.-III

CC-201 : Computer Organization & Advanced Microprocessor Time : 3 Hours] [Max. Marks : 70

Instructions :		ons :	(1) Write each question on new page.				
			(2) Draw diagram wherever necessary.				
1. (A) Answ			ver the following questions :				
		(a)	Explain Von Neumann architecture.	4			
		(b)	Explain Instruction Format with examples.	3			
			OR				
		(a)	Discuss CPU – Memory communication.	4			
		(b)	A clock signal has a frequency of 20 MHz with a duty cycle of 50%. Calculate its pulse width.	3			
	(B)	Ansv	wer briefly.				
		(a)	Explain Device Controller.	4			
		(b)	Discuss CPU registers.	3			
			OR				
		(a)	Explain the steps required for instruction set design.	4			
		(b)	Write a note on BUS concept.	3			
2.	(A)	Ansv	wer the following questions :				
		(a)	Convert following FPS number to decimal number :	4			
			0 X C2508000 H				
		(b)	Draw the block diagram and truth table of JK flip flop.	3			
			OR				
		(a)	Draw the block diagram and truth table of AND gate and EX-NOR gate.	4			
		(b)	Draw the block diagram and truth table of encoder.	3			

(B) Answer briefly.

(a)	Draw the block diagram and truth table of NAND gate and EX-OR gate.		
(b)	Convert following binary number in the single precision floating point standard : $(11.1)_2$	3	
	OR		
(a)	Draw the block diagram and truth table of Full Adder circuit.	4	

3

3

(b) Write a short note on floating point number.

3. (A) Answer the following questions :

(a)	Write a note on cache coherence.		
(b) Explain cache hit and cache miss.			
	OR		
(a)	Write a note on Associative Memory.	4	
(b)	Discuss any two memory parameters.	3	

(B) Answer briefly.

(a)	Explain two write policies of cache.	4
-----	--------------------------------------	---

(b) Draw the block diagram of RAM and ROM chip of size 256 X 8. **3**

OR

- (a) A computer has 32 bit main memory address and has 8 KB cache memory. The computer follows 4 way set-associative mapping. Each block size is 16 words.
 - Show the memory address format for set associative mapping.
 - Show the memory address format for direct mapping.
- (b) Discuss Instruction Prefetch and Write Buffer.

4. (A) Answer the following questions :

(a)	(a) Write a note on mobile / tablet processors.			
(b)	Discuss RICS processor.	3		
	OR			
(a)	Explain EU and BIU of 8086 with diagram.	4		

(b) Write a note on Single Chip Micro Computers (Microcontrollers). **3**

(B)	Answer	briefly.
-----	--------	----------

5.

	(a)	Write a note on Intel core processors.				
	(b)	What is an interrupt ? List all	vare interrupts of 8086. 3			
	OR					
	(a)	Discuss the various flags of s	tatus	registers. 4		
	(b)	Discuss Scalar, Superscalar a	nd Aı	ray processors. 3		
Cho	ose th	ne correct option :		14		
(1)		register stores the results o	f the l	ast processing step of the ALU.		
	(a)	Memory address	(b)	Instruction		
	(c)	Accumulator	(d)	Program counter		
(2)	func	is a binary pattern design	insio	de a microprocessor to perform a specific		
	(a)	Fetch execute cycle	(b)	Logical operation		
	(c)	Instruction	(d)	Data transfer operation		
(3)	MA	R stands for				
	(a)	Memory Address Read	(b)	Memory Active Read		
	(c)	Maximum Address Read	(d)	Memory Address Register		
(4)		bit is used to represent neg	ative	sign in Signed Magnitude Form.		
	(a)	1	(b)	- 1		
	(c)	0	(d)	- 0		
(5)		is a logical circuit that perf	forms	an addition operation on two binary digits.		
	(a)	Half Adder	(b)	Flip-flop		
	(c)	Full Adder	(d)	Decoder		
(6)	tran	is a device that accept smission over a common share	s dat d line	a from one of many input sources for		
	(a)	Multiplexer	(b)	Decoder		
	(c)	Demultiplexer	(d)	Encoder		
(7)		is the access time taken by	the fi	rst access in a series of accesses.		
	(a)	Latency	(b)	Bandwidth		
	(c)	Frequency	(d)	Cycle Time		

(8)) technique is used to minimize the time a processor spends waiting for instruction to be fetched from memory.				
	(a)	Instruction Prefetch	(b)	Read Buffer	
	(c)	Write Buffer	(d)	None of these	
(9)	A me	emory unit accessed by the con	tent is	s called memory.	
	(a)	Main	(b)	Cache	
	(c)	Secondary	(d)	Associative	
(10)	Cycl	e Time = Access Time +	·		
	(a)	Recovery Time	(b)	Pulse Width	
	(c)	Bandwidth	(d)	Duty Cycle	
(11)	RTL	stands for			
	(a)	Register Temporary Language	e		
	(b)	Register Transfer Language			
	(c)	Random Temporary Language	e		
	(d)	None of these			
(12)		status pin decides the opera	ting n	node of 8086.	
	(a)	MW/MR	(b)	MN/WR	
	(c)	MN/MX	(d)	None of these	
(13)	In	addressing mode, operan	d is a	part of the instruction.	
	(a)	Direct	(b)	Immediate	
	(c)	Indirect	(d)	None of these	
(14)		is a digital computer built o	n a si	ngle chip and used for control application.	
	(a)	Microprocessor	(b)	Microprogram	

(c) Microcontroller (d) None of these