Seat No. : \qquad
DD-113
December-2013

5 Years M.Sc. (CA \& IT) Integrated (KS) $1^{\text {st }}$ Sem. FY M.Sc. Fundamentals of Computer Organization

Time : 3 Hours]
[Max. Marks : 100

Instructions : (1) All questions are compulsory.
(2) Draw diagrams wherever necessary.
(3) Only simple calculators are allowed.

1. (a) Solve any five : (2 marks each)
(1) Convert 131.5625 into Binary number.
(2) Convert 1011011.001101 in to decimal number.
(3) Perform multiplication of 16×2.75 in binary number.
(4) Perform substraction of $110-0.111$ using 1 's compliment.
(5) Convert B 6 C 7 in to decimal number.
(6) Convert 110110.011 into Octal number.
(b) Explain Error detection method with parity using circuit diagram. 5
(c) Explain mantissa, exponent, normalization with examples in floating point representation.
2. (a) What are universal gate ? Prove that NAND and NOR gates are universal gates. 5
(b) Explain Exclusive OR and Exclusive NOR gate with truth table, symbol and diagram.
(c) Explain Duality with example. 3
(d) Write and prove De.Morgan's theorem with Boolean expression and diagrams. 5
(e) Write the Boolean expression for the logic diagram given below and simplify it as much as possible. Also draw the circuit of simplified expression.

3. (a) Explain Binary Adder-Substracter with circuit diagram.
(b) Explain four input multiplexer with circuit and block diagram. 5
(c) Explain full adder with diagram. 5
(d) What are decoders ? Explain 3 to 8 decoders with truth table and block diagram. 5
4. (a) What are printers ? List various type of printers and explain working of any three.
(b) What is Asynchronous data transfer ? Explain handshaking method of asynchronous data transfer.
(c) Write short note on DMA.
(d) Write short note on Magnetic Disk.
(e) Explain: (1 marks each)
(1) DRAM
(2) EEPROM
(3) OCR
(4) MICR
5. (a) Explain the working of SR flip-flop. List various flip-flops and define flip-flop. $\mathbf{5}$
(b) Explain Asynchronous binary counter with circuit and clock diagram. 5
(c) Explain various type of instruction formats.
(d) Reduce following expression using K-Map and implement the real minimal expression in both SOP and POS. Decide which is minimal expression.

$$
\mathrm{f}=\sum(0,2,4,6,7,8,10,12,13,15)
$$

