Seat No.: _	
-------------	--

DD-113

December-2013

5 Years M.Sc. (CA & IT) Integrated (KS) 1st Sem. FY M.Sc.

Fundamentals of Computer Organization

Time: 3 Hours [Max. Marks: 100

Instructions:

- **All** questions are compulsory. (1)
- (2) Draw diagrams wherever necessary.
- (3) Only simple calculators are allowed.
- 1 (a) Solve any **five** : (2 marks each)

10

- Convert 131.5625 into Binary number.
- Convert 1011011.001101 in to decimal number. (2)
- Perform multiplication of 16×2.75 in binary number.
- Perform substraction of 110 0.111 using 1's compliment.
- (5) Convert B6C7 in to decimal number.
- (6) Convert 110110.011 into Octal number.
- Explain Error detection method with parity using circuit diagram.

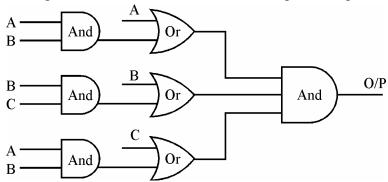
5

Explain mantissa, exponent, normalization with examples in floating point (c) representation.

5

5

- 2. What are universal gate? Prove that NAND and NOR gates are universal gates. (a)
 - Explain Exclusive OR and Exclusive NOR gate with truth table, symbol and diagram.


3 3

Explain Duality with example. (c)

- Write and prove De.Morgan's theorem with Boolean expression and diagrams. (d)
- 5

4

Write the Boolean expression for the logic diagram given below and simplify it (e) as much as possible. Also draw the circuit of simplified expression.

DD-113 1

3.	(a)	Explain Binary Adder-Substracter with circuit diagram.	5
	(b)	Explain four input multiplexer with circuit and block diagram.	5
	(c)	Explain full adder with diagram.	5
	(d)	What are decoders? Explain 3 to 8 decoders with truth table and block diagram.	5
4.	(a)	What are printers? List various type of printers and explain working of any three.	5
	(b)	What is Asynchronous data transfer? Explain handshaking method of asynchronous data transfer.	5
	(c)	Write short note on DMA.	3
	(d)	Write short note on Magnetic Disk.	3
	(e)	Explain: (1 marks each)	4
		(1) DRAM	
		(2) EEPROM	
		(3) OCR	
		(4) MICR	
5.	(a)	Explain the working of SR flip-flop. List various flip-flops and define flip-flop.	5
	(b)	Explain Asynchronous binary counter with circuit and clock diagram.	5
	(c)	Explain various type of instruction formats.	5
	(d)	Reduce following expression using K-Map and implement the real minimal expression in both SOP and POS. Decide which is minimal expression.	5
		$f = \sum (0, 2, 4, 6, 7, 8, 10, 12, 13, 15)$	

DD-113 2