Seat No. :
DD-107
December-2013

B.C.A. Semester - I
 CC-104 : Basics of Mathematics (BM)

Time : 3 Hours]
[Max. Marks : 70

1. (A) (a) Let $\mathrm{U}=\left\{x \in \mathrm{Z} / 0<x^{2}<32\right\}, \mathrm{A}=\{2,3,4\}$ and $\mathrm{B}=\{-5,-3,-1,2,4\}$ then find, (i) $(A \cup B)^{\prime} \quad$ (ii) $(A-B) \cup B^{\prime}$
(b) Let $A=\{x \in N-\{1,2\} / x$ is an odd number less than 10$\}$ and $B=\{1,2,3,4$, $7,8,10\}$ then find $A \Delta B$.
(c) Let $\mathrm{f}(x)=\frac{x-1}{x+1}$, then find $\mathrm{f}\left(\frac{1}{2}\right)$ and $\mathrm{f}\left(\frac{1}{x}\right)$.

OR

(a) If $\mathrm{A}=\{x \in \mathrm{Z} / 1<x<7\}, \mathrm{B}=\left\{x \in \mathrm{~N} /(x+1)^{2}<50\right\}$ and $\mathrm{C}=\{x \in \mathrm{Z} / 0<x<10\}$. Verify that $(\mathrm{A} \cup \mathrm{C}) \Delta(\mathrm{B} \cup \mathrm{A})=(\mathrm{B} \Delta \mathrm{C}) \cup \mathrm{A}$.
(b) If $\mathrm{A} \subset \mathrm{B}$, then show that $\mathrm{B}^{\prime} \subset \mathrm{A}^{\prime}$.
(c) Let $\mathrm{f}(x)=x^{2}-2 \mathrm{x}$ then find $\mathrm{f}(x)+\mathrm{f}(x+1)$ for $x=2$.
(B) (a) Give an example of sets A, B and C such that
(i) $\mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap \mathrm{C}$; but $\mathrm{B} \neq \mathrm{C}$.
(ii) $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cup \mathrm{C}$; but $\mathrm{B} \neq \mathrm{C}$.
(b) If $A=\{1,2,3\}$ and $B=\{a, b, c\}$, then find $A \times B$ and $B \times A$.

OR

(a) If $n(A)=24, n(B)=36$ and $n(A \cup B)=50$, find $n(A \cap B)$.
(b) If $n(A)=17, n(A \cup B)=38$ and $n(A \cap B)=2$, find $n(A-B), n(B)$ and $n(B-A)$.
(C) (a) Let $\mathrm{f}: \mathrm{R}-\{-1\} \rightarrow \mathrm{R}, \mathrm{f}(x)=\left(\frac{1-x}{1+x}\right)$ then find the value of $\mathrm{f}(x)+\mathrm{f}(1 / x)$ and $f(f(0))$.
(b) Let $\mathrm{f}(x)=\log _{10} x$ then find $\frac{\mathrm{f}(100)+\mathrm{f}(1000)}{\mathrm{f}(10)}$.

OR
(a) If f: $\mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=x+1$ and $\mathrm{g}(x)=2 x-\mathrm{k}$ and fog $=$ gof then find k.
(b) Give Domain and Range for the function $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{N}, \mathrm{f}(x)=|x|+1$.
2. (A) For given matrices $\mathrm{A}=\left[\begin{array}{ccc}2 & 4 & 3 \\ -3 & 2 & 0 \\ -1 & 1 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
(a) Find $3 \mathrm{~A}-\mathrm{B}$.
(b) Find (AB).
(c) Find the rank of a matrix (AB).

OR

For the given matrix $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 4 & 2 & 1 \\ 3 & 1 & 1\end{array}\right]$
(a) Find the determinant of a matrix A .
(b) Find the rank of a matrix A.
(c) Find the inverse of A by the definition of inverse of a Matrix.
(B) Express the given matrix $\mathrm{A}_{3 \times 3}$ as a sum of a symmetric and a skew-symmetric matrices.

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
2 & 2 & 2 \\
-1 & -2 & -2
\end{array}\right] \\
& \mathbf{O R}
\end{aligned}
$$

For a given matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 3 & -1 & 4\end{array}\right]$ find ${A A^{T}}^{T}$ and $A^{T} A$.
(C) Solve the following system using Cramer's Rule.

$$
\begin{aligned}
& x+2 y+2 z=5 \\
& 3 x+2 y+z=6 \\
& x+2 y+3 z=7
\end{aligned}
$$

OR
Solve the following system using inversion method.

$$
\begin{array}{r}
x+y+z=3 \\
x+2 y+3 z=6 \\
3 x+y+2 z=6
\end{array}
$$

3. (A) (a) Find the distance between two points $(-1,-2)$ and $(4,5)$.
(b) If the point $(x, 2)$ is equidistance from $(8,-2)$ and $(2,2)$, find the value of x.
(c) Show that three points $(1,1),(2,2)$ and $(3,3)$ are collinear.

OR

(a) What will be the value of x if the distance between $(x, 4)$ and $(-5,4)$ be 10 ?
(b) Find the area of a triangle formed by three points $(1,1),(2,4)$ and $(5,2)$.
(c) If the distance between $\mathrm{A}(5, \mathrm{a})$ and $\mathrm{B}(2,6)$ is $3 \sqrt{2}$, find the value of a.
(B) (a) If a point $\mathrm{P}(1,2)$ divides a line segment joining points $\mathrm{A}(-2,-1)$ and B in the ratio 2 : 3 then find the x-coordinate of point B .
(b) Give an equation of a line having y - intercept 3 and slope 2.

OR
(a) Determine x so that 5 is the slope of the line through $(x, 12)$ and $(3,2)$.
(b) Find the equation of a line which cuts off equal intercepts and passes through $(3,5)$.
(C) $\mathrm{A}(3,4)$ and $\mathrm{B}(5,-2)$ are the two points. Find the point P such that $\mathrm{PA}=\mathrm{PB}$ and area of $\triangle \mathrm{PAB}=10$.

OR

Find the equations of two lines passing through the point $(2,-1)$ and making an angle of 45° with the line $6 x+5 y-1=0$.
4. (A) (a) Find $\lim _{x \rightarrow 2} \frac{x^{7}-128}{x-2}$
(b) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ for $\mathrm{y}=x^{3}-\log x$
(c) Evaluate : $\int\left(x^{2}+2 x+1\right) \mathrm{d} x$

OR
(a) Check the continuity of $\mathrm{f}(x)$ at $x=5$.

$$
\begin{aligned}
\mathrm{f}(x) & =\frac{x^{2}-9}{x-3} & & , x<3 \\
& =6 & & , x \geq 3
\end{aligned}
$$

(b) Find derivative of $y=x^{3}+\mathrm{e}^{x}$ w.r.t. x.
(c) Evaluate : $\int \frac{1}{2 x+7} \mathrm{~d} x$
(B) (a) Find $\frac{d y}{d x}$ when $y=x^{4} 2^{x} e^{x}$
(b) Evaluate : $\int\left(\mathrm{t}^{2}+2 \mathrm{t}+\frac{1}{\mathrm{t}^{2}}\right) \mathrm{dt}$

OR

(a) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ when $\mathrm{y}=x \cdot \mathrm{e}^{x}$
(b) Evaluate : $\int(2 \sec x \tan x) \mathrm{d} x$
(C) (a) Find $\frac{d y}{d x}$ when $y=e^{3 x+4}$
(b) Evaluate : $\int_{1}^{2} \frac{\log _{2} x}{x} \mathrm{~d} x$

OR

(a) Find $\frac{d y}{d x}$ when $y=\sin ^{5} x$
(b) Evaluate $\int_{0}^{1}\left(x^{2}+5\right) \mathrm{d} x$
5. Do as directed.
(1) Write the Set $A=\{2,4,6,8, \ldots, 20\}$ by Property method.
(2) Give the Range for the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}, \mathrm{f}(x)=x$.
(3) List the elements of the set $\mathrm{A}=\left\{x / x^{4}-x=0, x \in \mathrm{~N}\right\}$.
(4) Power set of $\mathrm{A}=\{\mu, \lambda, \sigma$) has 9 elements. (True / False)
(5) For any matrix A the matrix A + AT is a symmetric matrix. (True / False)
(6) For any matrix A, $\mathrm{AA}^{-1}=\mathrm{I}$. (True / False)
(7) Give an example of a matrix A such that $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$.
(8) Find the slope of a line $x+y+1=0$.
(9) Give an equation of a line passing through points $(2,0)$ and $(3,0)$.
(10) Two lines $x-y=0$ and $x+y=0$ are perpendicular. (True / False).
(11) Find: $\lim _{x \rightarrow 2} \frac{x^{2}+2 x}{x}$.
(12) Is the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(x)=x$ continuous at $x=2$?
(13) For $\mathrm{y}=\mathrm{e}^{x}$ find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(14) Evaluate the integration of the function $y=2^{2}+3^{3}+\pi$ with respect to x.

