Seat No. : _____

DD-107

December-2013

B.C.A. Semester – I

CC-104 : Basics of Mathematics (BM)

(A) (a) Let U = { $x \in \mathbb{Z} / 0 < x^2 < 32$ }, A = {2, 3, 4} and B = {-5, -3, -1, 2, 4} then

Time : 3 Hours]

1.

[Max. Marks : 70

find, (i) $(A \cup B)'$ (ii) $(A - B) \cup B'$ 6 Let $A = \{x \in N - \{1, 2\}/x \text{ is an odd number less than } 10\}$ and $B = \{1, 2, 3, 4, ...\}$ (b) 7, 8, 10} then find A Δ B. (c) Let $f(x) = \frac{x-1}{x+1}$, then find $f\left(\frac{1}{2}\right)$ and $f\left(\frac{1}{x}\right)$. OR If A = { $x \in \mathbb{Z} / 1 < x < 7$ }, B = { $x \in \mathbb{N} / (x + 1)^2 < 50$ } and (a) $C = \{x \in Z / 0 < x < 10\}$. Verify that $(A \cup C) \Delta (B \cup A) = (B \Delta C) \cup A$. If $A \subset B$, then show that $B' \subset A'$. (b) (c) Let $f(x) = x^2 - 2x$ then find f(x) + f(x + 1) for x = 2. 4 **(B)** (a) Give an example of sets A, B and C such that $A \cap B = A \cap C$; but $B \neq C$. (i) (ii) $A \cup B = A \cup C$; but $B \neq C$. If $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$, then find $A \times B$ and $B \times A$. (b) OR If n(A) = 24, n(B) = 36 and $n(A \cup B) = 50$, find $n(A \cap B)$. (a) If n(A) = 17, $n(A \cup B) = 38$ and $n(A \cap B) = 2$, find n(A - B), n(B) and (b) n(B - A). Let f: R - {-1} \rightarrow R, f(x) = $\left(\frac{1-x}{1+x}\right)$ then find the value of f(x) + f(1/x) and (C) (a) f(f(0)). 4 Let $f(x) = \log_{10} x$ then find $\frac{f(100) + f(1000)}{f(10)}$. (b) OR If f: R \rightarrow R and g: R \rightarrow R, f(x) = x + 1 and g(x) = 2x - k and fog = gof then (a) find k. Give Domain and Range for the function f: $Z \rightarrow N$, f(x) = |x| + 1. (b)

DD-107

P.T.O.

2. (A) For given matrices
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -3 & 2 & 0 \\ -1 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

- (a) Find 3A B.
- (b) Find (AB).
- (c) Find the rank of a matrix (AB).

OR

For the given matrix A = $\begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 1 \\ 3 & 1 & 1 \end{bmatrix}$

- (a) Find the determinant of a matrix A.
- (b) Find the rank of a matrix A.
- (c) Find the inverse of A by the definition of inverse of a Matrix.
- (B) Express the given matrix $A_{3 \times 3}$ as a sum of a symmetric and a skew-symmetric matrices. 4

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 2 & 2 \\ -1 & -2 & -2 \end{bmatrix}$$
OR

For a given matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \end{bmatrix}$ find AA^{T} and $A^{T}A$.

(C) Solve the following system using Cramer's Rule.

$$x + 2y + 2z = 5$$
$$3x + 2y + z = 6$$
$$x + 2y + 3z = 7$$

Solve the following system using inversion method.

$$x + y + z = 3$$
$$x + 2y + 3z = 6$$
$$3x + y + 2z = 6$$

3. (A) (a) Find the distance between two points (-1, -2) and (4, 5).

- (b) If the point (x, 2) is equidistance from (8, -2) and (2, 2), find the value of x.
- (c) Show that three points (1, 1), (2, 2) and (3, 3) are collinear.

OR

- (a) What will be the value of x if the distance between (x, 4) and (-5, 4) be 10?
- (b) Find the area of a triangle formed by three points (1, 1), (2, 4) and (5, 2).
- (c) If the distance between A(5, a) and B(2, 6) is $3\sqrt{2}$, find the value of a.

DD-107

6

4

6

- (B) (a) If a point P(1, 2) divides a line segment joining points A (-2, -1) and B in the ratio 2 : 3 then find the *x*-coordinate of point B. 4
 - (b) Give an equation of a line having y intercept 3 and slope 2.

OR

- (a) Determine x so that 5 is the slope of the line through (x, 12) and (3, 2).
- (b) Find the equation of a line which cuts off equal intercepts and passes through (3, 5).
- (C) A(3, 4) and B(5, -2) are the two points. Find the point P such that PA = PB and area of $\Delta PAB = 10$.

OR

Find the equations of two lines passing through the point (2, -1) and making an angle of 45° with the line 6x + 5y - 1 = 0.

4. (A) (a) Find
$$\lim_{x \to 2} \frac{x^7 - 128}{x - 2}$$
 6
(b) Find $\frac{dy}{dx}$ for $y = x^3 - \log x$
(c) Evaluate : $\int (x^2 + 2x + 1) dx$

(a) Check the continuity of
$$f(x)$$
 at $x = 5$.

$$f(x) = \frac{x^2 - 9}{x - 3} , x < 3$$

= 6 , $x \ge 3$

(b) Find derivative of $y = x^3 + e^x$ w.r.t. *x*.

(c) Evaluate :
$$\int \frac{1}{2x+7} dx$$

(B) (a) Find
$$\frac{dy}{dx}$$
 when $y = x^4 2^x e^x$

(b) Evaluate :
$$\int \left(t^2 + 2t + \frac{1}{t^2}\right) dt$$

OR

(a) Find
$$\frac{dy}{dx}$$
 when $y = x \cdot e^x$

(b) Evaluate :
$$\int (2\sec x \tan x) dx$$

DD-107

4

(C) (a) Find
$$\frac{dy}{dx}$$
 when $y = e^{3x+4}$
(b) Evaluate : $\int_{1}^{2} \frac{\log_2 x}{x} dx$
(a) Find $\frac{dy}{dx}$ when $y = \sin^5 x$
(b) Evaluate $\int_{0}^{1} (x^2 + 5) dx$

5. Do as directed.

14

4

- (1) Write the Set $A = \{2, 4, 6, 8, ..., 20\}$ by Property method.
- (2) Give the Range for the function f: $N \rightarrow N$, f(x) = x.
- (3) List the elements of the set A = { $x/x^4 x = 0, x \in N$ }.
- (4) Power set of A = { μ , λ , σ) has 9 elements. (True / False)
- (5) For any matrix A the matrix A + AT is a symmetric matrix. (True / False)
- (6) For any matrix A, $AA^{-1} = I$. (True / False)
- (7) Give an example of a matrix A such that $A^{T} = -A$.
- (8) Find the slope of a line x + y + 1 = 0.
- (9) Give an equation of a line passing through points (2, 0) and (3, 0).
- (10) Two lines x y = 0 and x + y = 0 are perpendicular. (True / False).
- (11) Find : $\lim_{x \to 2} \frac{x^2 + 2x}{x}$.
- (12) Is the function f: $\mathbf{R} \rightarrow \mathbf{R}$, f(x) = x continuous at x = 2?
- (13) For $y = e^x$ find $\frac{d^2y}{dx^2}$.
- (14) Evaluate the integration of the function $y = 2^2 + 3^3 + \pi$ with respect to *x*.

DD-107