Seat No. :

\qquad
DC-108
December-2013

5 Years MBA Integrated (KS) SY MBA
 Business Mathematics

Time : 3 Hours]
[Max. Marks : 100

Instructions: (1) Non-programmable scientific calculator can be used.
(2) Statistical tables will be provide on request.

1. Solve following any two :
(A) (i) In how many ways can 4 men and 3 women be arranged at a round table if the 3 women are never sit together and always sit together ?
(ii) How many combination can be formed of 8 counters marked 1, 2, 3, 4, 5, $6,7,8$ taking them 4 at a time, there being atleast one odd and one even counter, in each combination ?
(B) (i) The figures 1, 2, 3, 4, 5 are written in every possible order. How many of the numbers 50 formed will be greater than 23000 ?
(ii) A gentleman invites a party of 13 guests to a dinner and places 8 of them at one table and the remaining 5 at other, the tables being round. Find the number of ways in which he can arrange the guests.
(C) (i) If $(\mathrm{n}+1) \mathrm{P}_{4}=12 \times \mathrm{nP}_{3}$, then find value of n .
(ii) $20 \mathrm{C}_{\mathrm{r}}=20 \mathrm{C}_{\mathrm{r}+4}$ then find value of r and C_{4}.
2. (A) Define following :
(1) Independent Events
(2) Exclusive events
(3) Mutually exhaustive events
(4) Equiprobable events
(5) Experiment
(B) Solve following : (any three)
(1) Two unbiased dice are thrown at a time. Find the probabilities that the sum of the numbers on the dice is
(i) less than 10
(ii) at most 6
(2) In lottery 2 tickets bear a prize and 10 tickets do not. A person has 2 tickets. Find the probability of his getting the prize.
(3) There are three drugs B_{1}, B_{2} and B_{3} for curing a patient. Probability of curing the patient by drug B_{1} is 0.75 , by drug B_{2} is 0.84 and by drug B_{3} is 0.90 . If the patient select any one drug at random, what is the probability that he will be cured ? If it is given that the patient is cured, what is the probability that he has selected drug B_{2} ?
(4) The probability distribution of a random variable X is given below. Find E $(x+5)$ and $\mathrm{V}(x)$.

\mathbf{X}	0	1	2	3	4	5
$\mathbf{P ~ (x)}$	P	$6 / 20$	$1 / 10$	$1 / 5$	$2 / 10$	P

3. Solve following : (any two)
(A) (i) Find middle terms in the expansion of $\left(3 x-\frac{x^{3}}{6}\right)^{9}$.
(ii) By using principle of mathematical induction prove that $3^{2 \mathrm{n}}+7$ is divisible by 8 .
(B) (i) Find sum of the series $\frac{1^{3}}{1}+\left(\frac{1^{3}+2^{3}}{2}\right)+\left(\frac{1^{3}+2^{3}+3^{3}}{3}\right)+\ldots$ to n terms.
(ii) By principle of mathematical induction prove that for every natural number $n>1$ that $3^{n}>3 n+1$.
(C) (i) If the coefficient of x^{7} and x^{8} in the expansion of $\left(3+\frac{x}{2}\right)^{\mathrm{n}}$ are equal, find the value of n.
(ii) Find the term having coefficient x^{-7} in the expansion of $\left(\sqrt{x}-\frac{2}{x}\right)^{10}$
4. Solve following any two :
(A) The sum of five numbers in A.P. is 15 and the sum of their squares is 55 , find the numbers.
(B) The $(p+q)^{\text {th }}$ term of a G.P. is m and its $(p-q)^{\text {th }}$ term is n then prove that $p^{\text {th }}$ term is $\sqrt{\mathrm{mn}}$
(C) (i) Two numbers are in the ratio 1:9. Prove that their A.M. and G.M are in the ratio 5:3.
(ii) The $2^{\text {nd }}$ term of a G.P. is 48 and its $7^{\text {th }}$ term is $364 \frac{1}{2}$, find its $4^{\text {th }}$ term.
5. Solve the following : (any two)
(A) Estimate the population for the year 1980 by using following data :

Year	$:$	1970	1978	1981
Population (in lakhs) :	12	15	18	

(B) If $\sqrt{2}=2.41, \sqrt{5}=2.24, \sqrt{6}=2.45$, then find value of $\sqrt{8}$.
(C) By using backward interpolation interpolate the premium at the age of 37 years :

Age in years :	20	25	30	35	40
Premium (in ₹) :	23	26	30	35	42

