Seat No. :

DE-116

December-2013
B.Sc. Sem. V

STATISTICS - Paper - 305
(Statistics Using R)
Time : 3 Hours]
[Max. Marks : 70

1. (a) What is R ? Explain in detail.

OR
Explain R as a Statistical Software and Language.
(b) Following data are given heights of 45 Female High School Students.

Prepare a frequency distribution of the data.

170	151	154	160	158	154	171	156	160
157	148	165	158	159	155	151	152	161
156	164	156	163	174	153	170	149	166
154	166	160	160	161	154	163	164	160
148	162	167	165	158	158	176		

The following table gives the no. of students in different faculties of university.

Year	Arts	Commerce	Science
1996	2810	890	480
1997	3542	1364	540
1998	4301	2051	690
1999	5362	949	785
2000	6593	2071	1200

(i) Represent the total of students for different year by means of a simple bar diagram.
(ii) Represent the data as a Subdivide bar plot.
2. (a) For $\mathrm{n}=10,20,50,99$, plot pmf of Binomial distribution for $\mathrm{p}=0.3$.

OR
Obtain Probability distribution of x. Where x is no. of spots showing when a six-sided symmetric die is rolled. Simulate random samples of sizes 300 , and 500 .
(b) Draw a random sample of sizes 15 from $\mathrm{N}(6,3)$ distribution. Also find mean.

OR

For Poisson variable (X) with Pace meter $\lambda=0.2$ compute $\mathrm{P}(\mathrm{X}>3)$ and $\mathrm{P}(\mathrm{X}>8)$.
3. (a) Draw scatter plots of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ for the following data :

Y_{1}	X_{1}	Y_{2}	X_{2}
9.50	10	6.13	09
9.20	09	9.25	13
6.95	5	8.25	12
8.49	13	7.60	08
7.24	11	5.50	10
5.25	12	8.74	09
6.08	08	7.05	08

Compute Spearman's rank correlation coefficient and Pearson's product moment. Correlation coefficient for the following data :

X	11.1	10.3	12.0	15.1	13.7	18.5	17.3	14.2
Y	10.9	14.2	13.8	21.5	13.2	21.1	16.4	19.3

(b) Obtain least square equation of line op Regression of x on y from following data :

X	34	37	36	32	32	36	35	34	29	35
Y	37	37	34	33	40	39	37	36	34	35

OR
The following data pertain the resistance in (ohms) and the failure times (minutes) of 24 overloaded resistors.

X (Resistance)	43	29	44	33	47	34	31	48
Y (Failure time)	32	20	45	35	22	46	28	26

Obtain line of regression of y on x.
4. (a) Suppose 3 drying formulas for curing a glue are studied and the following drying times are observed.

Sr. No.	Formula	Obsewations					
1	A	13	10	8	11	8	
2	B	13	14	11	12	13	
3	C	4	1	3	4	2	4

Carry out parametric analysis of Variances, Assuming equality of variances.

OR

(a) Fit Binomial distribution and test goodness of fit for the following data :

x	0	1	2	3	4	5	6	7	8
f	2	8	46	116	211	243	208	119	40

(b) Following table shows gain in weight of two lots of Female rats under two diets. Test the hypothesis that the avg. gain in weight for high protein diet is more than that for low protein.

Sr. No.	1	2	3	4	5	6	7
High Protein	134	146	104	119	124	161	107
Low protein	70	118	101	85	107	132	94
OR							

(b) Fit Poisson distribution and test goodness of fit for the following data :

x	0	1	2	3	4	5	6
f	6	9	14	10	5	3	1

5. Answer the following :
(1) Write three uses of R software.
(2) Explain matrix function with example.
(3) How to store file in R ?
(4) How to import data from Excel in R ?
(5) Explain lists function with example.
(6) 18191920212425 find Mean \& Median for the given data.
(7) Explain C function with example.

Seat No. :

DE-116
December-2013
B.Sc. Sem. V Examination

305 : Statistics
Statistical Ecology
Paper : STA - 305
Time: 3 Hours]
[Max. Marks : 70
Instructions: (1) All questions are compulsory.
(2) Each question carries equal marks.
(3) Statistical tables and graph papers will be provided on request.
(4) Use of Scientific calculator is allowed.

1. (a) Explain logistic growth model, in context to ecology.

OR
Give Scope and properties of exponential model.
(b) Define term : Ecology. State different fields where ecology is applied from statistical view point.

OR
Explain Gompertz's model. State its uses.
2. (a) Give measures to protect biodiversity.

OR
Explain force mortality, stable population and stationary population.
(b) Answer any one :
(i) Explain in brief : Life table.
(ii) Write a note on Leslie Matrix.

OR
Give brief details on biodiversity and its role in ecology.
3. (a) State probability density function of \log normal distribution. How it differs from Normal distribution?

OR
State the probability mass function of Geometric Distribution. State applications of Geometric distribution to ecology.
(b) Explain in detail : Poisson Forest, Regular Spatial Pattern.

OR

Explain the procedure of calculating Simpson’s index.
4. (a) State the different terms used in life table. Give their interrelationship.

OR

Explain exponential model. Give its applications in ecology.
(b) Explain the procedure of calculating Shannon's index.

OR
State different capture recapture models in the literature of Statistical Ecology and explain any one of them.
5. Answer the following :
(a) Give two names of smoothing process.
(b) How will you interpret the liner growth model?
(c) Define closed population.
(d) Give two limitations of exponential distribution.
(e) State scope and limitations of Gompertz's model.
(f) State the names to derive (i) estimator of recapture and multiple recaptures, (ii) estimator of population size.
(g) Give use of log normal distribution.

