Seat No. :
DB-105
December-2013

B.Sc. (CBCS) Sem.-V
 MAT-304 : Mathematics
 (Mathematical Programming)

Time : 3 Hours]
[Max. Marks : 70
Instructions : (1) All questions are compulsory.
(2) Each question carries equal marks.

1. (a) Define a convex set. Prove that the intersection of two convex sets is also convex. Is the union of two convex sets, a convex ? Justify your answer.
(b) Attempt any two :
(1) Consider a set $\mathrm{S}=\left\{\bar{x} \in \mathrm{E}^{\mathrm{n}} /\|\bar{x}\|=1\right\}$. Is a set S convex ? Justify.
(2) Show that the set of all convex combinations of a finite numbers of points of $\mathrm{S} \subset \mathrm{E}^{\mathrm{n}}$ is a convex.
(3) A manufacturer produces two different models X and Y of the same product. Model X makes a contribution of ₹ 50 per unit and Model Y ₹ 30 per unit towards total profit. Raw materials r_{1} and r_{2} are required for production. At least 18 kg of r_{1} and 12 kg of r_{2} must be used daily. Also at most 34 hours of labour are to be utilized. A quantity of 2 kg of r_{1} is needed for model X and 1 kg of r_{1} for model Y. For each X and $Y, 1 \mathrm{~kg}$ of r_{2} is required. It takes 3 hours to manufacture model X and 2 hours to manufacture model Y. A manufacturer wishes to maximize the profit. Formulate the linear programming problem.
2. (a) Define a feasible solution. If S_{F} is a non-empty set of all feasible solutions of a L.P. problem then prove that S_{F} is a convex set.
(b) Attempt any two :
(1) Solve the following L.P. problem by Simplex method:

Maximize $\quad Z=3 x_{1}+2 x_{2}+5 x_{3}$
Subject to
$2 x_{1}+3 x_{2} \leq 8$
$2 x_{1}+5 x_{2} \leq 10$ $3 x_{1}+2 x_{2}+4 x_{3} \leq 15$ and $x_{1}, x_{2} \geq 0$
(2) Solve the following L.P. problem by Big-M method or two-phase simplex method:
Minimize $\quad \mathrm{Z}=x_{1}+x_{2}$
Subject to $\quad 2 x_{1}+x_{2} \geq 4$

$$
x_{1}+7 x_{2} \geq 7
$$

$$
\text { and } x_{1}, x_{2} \geq 0
$$

(3) Solve the following integer programming problem by the Cutting plane method :
Maximize $\quad \mathrm{Z}=x_{1}+x_{2}$
Subject to $\quad 3 x_{1}+2 x_{2} \leq 5$
$x_{1} \leq 2$;
$x_{1}, x_{2} \geq 0$ and are integers.
3. (a) Define a Dual of a primal. Prove that the dual of the dual is a primal.
(b) Attempt any two :
(1) Using the principle of duality, solve the following L.P. problem :

Maximize $\mathrm{Z}=4 x_{1}+x_{2}$
Subject to $\quad x_{1}+x_{2} \geq 3$
$x_{1}-x_{2} \geq 2$
and $x_{1}, x_{2} \geq 0$.
(2) Describe the solution of the following L.P. problem by solving its dual :

Maximize $\quad Z=3 x_{1}+2 x_{2}$
Subject to $\quad 2 x_{1}+x_{2} \leq 5$
$x_{1}+x_{2} \leq 3$
and $x_{1}, x_{2} \geq 0$
(3) Use the dual simplex method to solve the following L.P. problem :

$$
\begin{array}{lr}
\text { Minimize } & \mathrm{Z}=10 x_{1}+6 x_{2}+2 x_{3} \\
\text { Subject to } & -x_{1}+x_{2}+x_{3} \geq 1 \\
& 3 x_{1}+x_{2}-x_{3} \geq 2 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

4. (a) Prove that the number of basic variables in transportation problem are at the most ' $\mathrm{m}-\mathrm{n}+1$ '.
(b) Attempt any two :
(1) Solve the following T.P. for minimum transportation cost of MODI's method:

	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	Supply
O_{1}	21	16	25	13	$\mathbf{1 1}$
O_{2}	17	18	14	23	$\mathbf{1 3}$
O_{3}	32	27	18	41	$\mathbf{1 9}$
Demand	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{4 3}$

(2) Find the optimum solution of the following T.P. :

	D_{1}	D_{2}	D_{3}	Supply
O_{1}	5	9	9	$\mathbf{7 6}$
O_{2}	17	25	17	$\mathbf{8 2}$
O_{3}	9	17	25	77
Demand	$\mathbf{7 2}$	$\mathbf{1 0 2}$	$\mathbf{4 1}$	

(3) Solve the following 4×4 assignment problem to minimize the total cost :

	A	B	C	D
I	40	35	38	41
II	42	35	34	40
III	38	34	34	37
IV	39	36	38	36

5. (a) Answer in short: (each of two marks)
(1) Show that $[\mathrm{a}, \mathrm{b}]$ in R is convex set.
(2) (i) Illustrate a L.P. problem of two variables having no solution.
(ii) Illustrate a L.P. problem of two variables having infinitely many solution.
(3) Write down the dual of the following L.P. Problem :

Minimize $\quad \mathrm{Z}=2 x_{1}+x_{2}-3 x_{3}$
Subject to $\quad 2 x_{1}+x_{2}-3 x_{3} \leq-5$
$x_{1}+2 x_{2}=7$
$x_{1}+x_{3} \geq 9$
$-2 x_{1}-5 x_{2} \geq-8$
and $x_{1}, x_{2} \geq 0$;
x_{3} - unrestricted variable.
(4) Determine an initial basic feasible solution of the following transportation problem using North-West corner method :

	P	Q	R	S	Supply
A	19	30	50	10	$\mathbf{7}$
B	70	30	40	60	$\mathbf{9}$
C	40	8	70	20	$\mathbf{1 8}$
Demand	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 4}$	$\mathbf{3 4}$

(b) Fill in the blanks with appropriate answer : (each of one mark)
(1) For the maximization L.P. problem, the simplex method is terminated when all values of \qquad .
(a) $\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}} \geq 0$
(b) $\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}} \leq 0$
(c) $\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}=0$
(d) $\mathrm{z}_{\mathrm{j}} \leq 0$
(2) If dual has an unbounded solution, primal has \qquad .
(a) no feasible solution
(b) feasible solution
(c) unbounded solution
(d) none of these
(3) Each constraint in L.P. problem is expressed as an \qquad
(a) inequality with \geq sign
(b) inequality with \leq sign
(c) equality with $=$ sign
(d) none of these
(4) A constraint in L.P. problem restricts \qquad .
(a) value of objective function
(b) value of a decision variable
(c) use of the available resource
(d) all of these
(5) The dummy source or dummy destination in a transportation problem is added to \qquad _.
(a) ensure that total cost does not exceed a limit
(b) prevent solution from becoming degenerate
(c) satisfy rim conditions
(d) none of these
(6) An assignment problem is considered as a particular case of a transportation problem because \qquad .
(a) all $x_{\mathrm{ij}}=0$ or 1
(b) the no. of rows equal column
(c) all rim conditions are 1
(d) all of these

