Seat No. :

DA-125

December-2013
B.Sc., Sem.-V

MAT-303 : Mathematics

(Complex Variables and Fourier Series)

Time: 3 Hours]
[Max. Marks : 70
Instructions: (1) All the questions are compulsory.
(2) Attempt any two from (a), (b) and (c) in the Q. 1 to Q. 4
(3) Q. 5 is of short questions and it is compulsory.
(4) Each questions is of $\mathbf{1 4}$ marks.

1. (a) State atleast ten algebraic properties of the complex numbers. Show that $\mathrm{z}=1 \pm \mathrm{i}$ satisfies the equation $z^{2}-2 z+2=0$. Also, find the four roots of the equation $\mathrm{z}^{4}+4=0 ; \mathrm{z} \in \mathrm{C}$.
(b) State the triangle inequality for the complex numbers, hence show that

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right| ; \text { for } z_{1}, z_{2} \in C \text {. Prove that } \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{z_{2}}, z_{2} \neq 0 \text {, for } z_{1}, z_{2} \in C \text {. }
$$

(c) Is there any relation between the trigonometric and hyperbolic complex functions ? If yes, state it for all the trigonometric functions. Define convergence of sequence and series. Suppose that $\mathrm{z}_{\mathrm{n}}=x_{\mathrm{n}}+\mathrm{iy} \mathrm{n}_{\mathrm{n}}(\mathrm{n}=1,2, \ldots$.$) and \mathrm{S}=\mathrm{X}+\mathrm{iY}$ then prove that $\sum_{n=1}^{\infty} z_{n}=S$ if and only if $\sum_{n=1}^{\infty} x_{n}=X$ and $\sum_{n=1}^{\infty} y_{n}=Y$
2. (a) Derive Cauchy-Riemann equations $\mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}$ and $\mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}$ stating necessary conditions and verify the same for the function $\mathrm{f}(\mathrm{z})=\mathrm{e}^{\mathrm{Z}}, \mathrm{z}=x+\mathrm{iy}$.
(b) Show that the function $\mathrm{f}(\mathrm{z})=\frac{x^{3}(1+\mathrm{i})-\mathrm{y}^{3}(1-\mathrm{i})}{x^{2}+\mathrm{y}^{2}} ;(x, y) \neq(0,0)$

$$
=0 \quad ;(x, y)=(0,0)
$$

is not analytic at $z=0(z=(x, y))$; even if $f(z)$ satisfies Cauchy-Riemann equations at origin i.e. $z=0$.
(c) Define harmonic function. Find the harmonic conjugate of $y^{3}-3 x^{2} y$ and corresponding analytic function in terms of z .
3. (a) Find the image of strip $1 \leq x \leq 2$ under the mapping $\mathrm{w}=\frac{1}{\mathrm{z}}, \mathrm{z} \neq 0$
(b) Prove : An analytic function $\mathrm{f}(\mathrm{z})$ is conformal at z_{0} if and only if $\mathrm{f}^{\prime}\left(\mathrm{z}_{0}\right) \neq 0$.
(c) Show that the angle between the curves $\mathrm{y}=2 x$ and $\mathrm{y}=x-1$ is preserved under the mapping $\mathrm{w}=\mathrm{z}^{2}$.
4. (a) Define the Fourier series for the function f and obtain the same for the function $\mathrm{f}(x)=x \sin x$, hence, deduce that $\frac{x}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\ldots \ldots \ldots \ldots$.
(b) State and prove Bessel's inequality.
(c) Find the Fourier series expansion of the function $\mathrm{f}(x)=x+x^{2}$ in $[-\pi, \pi]$.
5. (i) Simplify : $\left(\frac{1}{2-3 \mathrm{i}}\right)\left(\frac{1}{1+\mathrm{i}}\right)$
(ii) Write the C-R equations and derivative of the complex function $f(z)$ in polar form.
(iii) Is the function $f(z)=|z|^{2}$ analytic? Justify.
(iv) Find the singular points of $|\mathrm{z}|^{2}$ and $\frac{1}{\mathrm{z}}$.
(v) Find the non-conformal points of the mapping $f(z)=2 z^{3}+15 z^{2}-6 z+9$.
(vi) Obtain $\int_{-\pi}^{\pi} \cos n x d x$ for all n.
(vii) Obtain $\int_{-\pi}^{\pi} \sin m x \cos n x d x$ for all $m, n=0,1,2, \ldots \ldots \ldots \ldots$

