Seat No. : _____

DA-125

December-2013

B.Sc., Sem.-V

MAT-303 : Mathematics

(Complex Variables and Fourier Series)

Time : 3 Hours]

[Max. Marks: 70

Instructions : (1) All the questions are compulsory.

- (2) Attempt any **two** from (a), (b) and (c) in the Q. 1 to Q. 4
- (3) Q. 5 is of short questions and it is compulsory.
- (4) Each questions is of **14** marks.
- (a) State atleast ten algebraic properties of the complex numbers. Show that z = 1 ± i satisfies the equation z² 2z + 2 = 0. Also, find the four roots of the equation z⁴ + 4 = 0; z ∈ C.
 - (b) State the triangle inequality for the complex numbers, hence show that

$$||z_1| - |z_2|| \le |z_1 - z_2|$$
; for $z_1, z_2 \in C$. Prove that $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{z_2}, z_2 \ne 0$, for $z_1, z_2 \in C$.

- (c) Is there any relation between the trigonometric and hyperbolic complex functions ? If yes, state it for all the trigonometric functions. Define convergence of sequence and series. Suppose that $z_n = x_n + iy_n$ (n = 1, 2,...) and S = X + iY then prove that $\sum_{n=1}^{\infty} z_n = S$ if and only if $\sum_{n=1}^{\infty} x_n = X$ and $\sum_{n=1}^{\infty} y_n = Y$
- 2. (a) Derive Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$ stating necessary conditions and verify the same for the function $f(z) = e^z$, z = x + iy.
 - (b) Show that the function $f(z) = \frac{x^3(1+i) y^3(1-i)}{x^2 + y^2}$; $(x, y) \neq (0, 0)$

is not analytic at z = 0 (z = (x, y)); even if f(z) satisfies Cauchy-Riemann equations at origin i.e. z = 0.

= 0; (x, y) = (0, 0)

(c) Define harmonic function. Find the harmonic conjugate of $y^3 - 3x^2y$ and corresponding analytic function in terms of z.

DA-125

- 3. (a) Find the image of strip $1 \le x \le 2$ under the mapping $w = \frac{1}{z}, z \ne 0$
 - (b) Prove : An analytic function f(z) is conformal at z_0 if and only if $f'(z_0) \neq 0$.
 - (c) Show that the angle between the curves y = 2x and y = x 1 is preserved under the mapping $w = z^2$.

4. (a) Define the Fourier series for the function f and obtain the same for the function $f(x) = x \sin x$, hence, deduce that $\frac{x}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots$

- (b) State and prove Bessel's inequality.
- (c) Find the Fourier series expansion of the function $f(x) = x + x^2$ in $[-\pi, \pi]$.

5. (i) Simplify
$$: \left(\frac{1}{2-3i}\right) \left(\frac{1}{1+i}\right)$$

- (ii) Write the C-R equations and derivative of the complex function f(z) in polar form.
- (iii) Is the function $f(z) = |z|^2$ analytic ? Justify.

(iv) Find the singular points of
$$|z|^2$$
 and $\frac{1}{z}$.

(v) Find the non-conformal points of the mapping $f(z) = 2z^3 + 15z^2 - 6z + 9$.

(vi) Obtain
$$\int_{-\pi}^{\pi} \cos nx \, dx$$
 for all n.
(vii) Obtain $\int_{-\pi}^{\pi} \sin mx \cos nx \, dx$ for all m, n = 0, 1, 2,