Seat No. : _____

ZC-117

April-2014

M.Sc. Sem. IV

MAT-508 : Mathematics (Fourier Analysis)

Time : 3 Hours]			rs] [Max. Ma	[Max. Marks : 70	
1.	(A)	Attempt any one :		7	
		(1)	State and prove the uniqueness theorem for continuous functions.		
		(2)	Show that C is not dense in L^{∞} .		
	(B)	Atte	empt any two :	4	
		(1)	Does there exist a non-constant function $f \in L^1$ such that		
			$\hat{f}(m + n) = \hat{f}(m) + \hat{f}(n)$ for all integers m and n ?		
		(2)	If $f \in L^1$ then show that		
			$\operatorname{Taf}(n) = e^{-ina} \widehat{f}(n).$		
		(3)	If $f \in L^{\infty}$, then show that $ f(x) \le f _{\infty}$, for almost every <i>x</i> .		
	(C)	Ans	wer in brief :	3	
		(1)	If $f(x) = 2 \cos x + 2$, then what is $\hat{f}(2)$?		
		(2)	Prove or disprove : The Fourier transform map $T : L' \rightarrow l_{\infty}(\mathbb{Z})$ is onto.		
		(3)	Give an example of a discontinuous function f such that $\hat{f}(1) = 1$.		
2.	(A)	∆ tte	empt any one :	7	
4.	(П)		Let $\{K_n\}$ be an approximate identity. Then show that	/	
		(+)	(n)		

$$\lim_{n \to \infty} ||K_n * f - f||_{\infty} = 0, \ \forall f \in C.$$

(2) If γ is a non-trivial complex continuous algebra homomorphism between L1 and \mathbb{C} , then show that its Kernel is a maximal ideal in L¹.

1

ZC-117

P.T.O.

- (B) Attempt any **two**:
 - Let $1 \le p \le \infty$ and q be the conjugate index of p. If $f \in L^p$ and $g \in L^q$ then (1)show that f * g is continuous.
 - (2) If $f \in L^1$ and g is absolutely continuous then show that f * g is absolutely continuous.
 - Show that L^1 does not have identity with respect to convolution. (3)
- (C) Answer in brief :
 - Prove or disprove : If f * f * f = f, then f is a trigonometric polynomial. (1)
 - Show that convolution is associative. (2)
 - Give an example of an approximate identity in L^1 . (3)
- 3. (A) Attempt any **one** :
 - State and prove Weierstrass theorem for continuous functions using the (1)Fejer's theorem.
 - (2) If $f \in L^1$, then prove that $\int_{0}^{b} f(x)dx = \hat{f}(0) (b-a) + \sum_{n \neq 0} \hat{f}(n) \frac{e^{inb} - e^{ina}}{in}.$
 - (B) Attempt any **two** :
 - (1) If $g \in L^{\infty}$ and $\hat{g}(n) = O(1/n)$, then show that $\{\|S_Ng\|_{\infty}\}$ is a bounded sequence.
 - (2) Given $\delta > 0$, show that there exists M > 0, such that $|D_N(x)| \le M$, for all N and $\delta \leq |\mathbf{x}| \leq \pi$.
 - If for a trigonometric series $\sum c_n e^{inx}$, its cesaro means converge in L¹ norm (3) to f, then show that $\sum c_n e^{inx}$ is a Fourier series of f.
 - (C) Answer in brief :
 - State Fejer's theorem. (1)

π

State any one conditions under which Cesaro summability implies (2)summability.

(3) Show that
$$\int_{-\pi}^{\pi} F_N(x) dx$$
 is constant for all N.

ZC-117

4

7

3

- 4. (A) Attempt any **one** :
 - (1) If $a_n \downarrow 0$ and (a_n) is convex then prove that $\sum a_n \cos nx$ is a Fourier series of $f(x) = \sum_{n=0}^{\infty} (n+1) \Delta^2 a_n \frac{1}{2} F_n(x)$.
 - (2) If (a_n) is quasi-convex and bounded then show that the sequence $(n\Delta a_n)$ is bounded. Also show that if (a_n) is quasi-convex and convergent then the sequence $(n\Delta a_n)$ is convergent.
 - (B) Attempt any **two** :
 - (1) Discuss the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n} \sin nx$.
 - (2) Let $\delta > 0$. If $a_n \to 0$ and $\sum |\Delta a_n| < \infty$, then show that the cosine series $\sum a_n \cos nx$ converges uniformly in $\delta \le |x| \le \pi$.
 - (3) If $a_n \downarrow 0$ and $\sum \frac{a_n}{n} = \infty$, then prove that $\sum a_n \sin nx$ is not a Fourier series.
 - (C) Answer in brief :

(1) Is
$$a_n = \frac{n}{n+1}$$
 convex ?

- (2) Show that the Fourier transform map $T : L^1 \to C_0(\mathbb{Z})$ is not onto using the open mapping theorem.
- (3) True or False : If $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$, then f is continuous.
- 5. (A) Attempt any **one** :
 - (1) Prove or disprove : $L^3 \subseteq L^1 * L^3$.
 - (2) State the Uniform Boundedness theorem and using it show that there exists a function which is continuous at 0 but whose Fourier series diverges at 0.

3

ZC-117

P.T.O.

3

4

7

- (B) Attempt any **two** :
 - (1) If f is of bounded variation then show that $\{nf(n)\}$ is a bounded sequence.
 - (2) State (only) some of the consequences of Jordan's theorem.
 - (3) Let $f \in L^1$ and s be any complex number. If for some positive δ ,

$$\int_{0}^{\delta} \frac{f_{s}^{*}(y)}{y} \, dy < \infty, \text{ then show that } S_{N}f(x) \to s.$$

(C) Answer in brief :

(1)

- State Jordan's theorem.
- (2) True or False : $L^1 * C = C$.
- (3) True or False : $L^2 * L^2 = L^2$.

3