Seat No. : _____

DA-134

December-2013

5 Years M.Sc. Sem-III Discrete Mathematics S Y M.Sc. (CA-IT) Integrated (KS)

Time : 3 Hours]

[Max. Marks : 100

20

Instruction : Calculators are not allowed.

- 1. Attempt any **four** :
 - (1) Define PCNF and PDNF. Obtain PCNF and PDNF of the formula

 $(7P \rightarrow R) \land (Q \rightleftharpoons P).$

- (2) Show that the conclusion 7P follows from the premises $R \rightarrow 7Q$, $R \lor S$, $S \rightarrow 7Q$, $P \rightarrow Q$ using indirect method of proof if needed.
- (3) Show that $\{7, \rightarrow\}$ is functionally complete.
- (4) Show that the following premises are inconsistent : $P \rightarrow Q$, $Q \rightarrow R$, $S \rightarrow 7R$ and $P \wedge S$.
- (5) Define :
 - (i) Statement
 - (ii) Atomic Statement
 - (iii) Molecular Statement

If the truth values of P and Q are T and that of R and S are F, then find out the truth value of the following formula :

 $(7 \ (P \land Q) \lor 7R) \lor (((7P \land Q) \lor 7R) \land S)$

2. Attempt any **four** :

(1) Let $X = \{1, 2, 3, 4, 5\}$ and $R = \{\langle x, y \rangle | x - y \text{ is divisible by } 2\}$. Show that R is an equivalence relation. Draw the graph of R and find M_R .

DA-134

P.T.O.

20

(2) Define any 4 types of retations giving examples.

Let
$$\mathbf{M}_{\mathrm{R}} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

What are the properties of relation R?

- (3) Show that (Fx) M(x) follows logically from the premises (x) (H(x) \rightarrow M(x)) and (Fx) H(x)
- (4) State one advantage of predicate calculus over statement calculus. Write the following statements using predicate formulas :
 - (1) Every two wheeler is a scooter.
 - (2) Every two wheeler that is a scooter is manufactured by Bajaj.
 - (3) There is a two wheeler that is not manufactured by Bajaj.
 - (4) There is a two-wheeler manufactured by Bajaj that is not a scooter.
- (5) Let $X = \{1, 2, 3, 4\}$ and a relation R on X defined by $R = \{<1, 2>, <4, 3>, <2, 2>, <2, 1>, <3, 1>\}$

Is R transitive ? Reflexive ? Symmetric ? Find a set $S \supseteq R$ such that S is transitive. Justify.

3. Attempt any **five** :

(1) Define transitive closure of a relation.

Let X = {1, 2, 3} R = {<1, 2>, <2, 3>, <3, 1>}. Find the transitive closure of R.

- (2) Draw the Hasse diagram for the relation $\langle P(A), \leq \rangle$, where A = {a, b, c, d} and P(A) denotes the power set of A.
- (3) What is a partition ?

Let $A = \{a, b, c, d, e, f, g, h\}$. Consider the following subsets of A :

 $A_1 = \{a, b, c, d\}, A_2 = \{a, c, e, f, g, h\}$

 $A_3 = \{a, c, e, g\}, A_4 = \{b, d\} and A_5 = \{f, h\}$

Which of the following are partitions of A ? $\{A_1, A_2\}$, $\{A_1, A_5\}$ and $\{A_3, A_4, A_5\}$. Justify.

DA-134

20

- (4) Draw the Hasse diagram of (S_{36}, D) where S_{36} denotes the set of positive divisors of 36 and D is relation "divides". Find the smallest and largest element of (S_{36}, D) if it exists.
- (5) Let $\{L, \leq\}$ be a lattice. Show that for any $a, b, c \in L$

$$b \le c \Longrightarrow \begin{cases} a \ast b \le a \ast c \\ a \oplus b \le a \oplus c \end{cases}$$

Define a complemented lattice.

4. Attempt any **four** :

- (1) Let X = {1, 2, 3}, Y = {a, b}. List all the functions from X to Y and indicate in each case whether the function is one-one, onto and is one-one onto. If X has m elements and Y has n elements, how many functions are possible from X to Y ?
- (2) What is an atom and antiatom ? Obtain the product of sums canonical form of the Boolean expression $x_1 * x_2$ having three variables x_1, x_2 and x_3 .
- (3) Represent and minimize the given Boolean expression using a K-map and then sketch its circuit diagram using necessary logic gates.
- (4) Give an expression $\alpha(x_1, x_2, x_3)$ defined to be \oplus 0, 3, 5, 7 and determine the value of $\alpha(a, b, 1)$ where $a, b, 1 \in B$ and $\langle B, *, \oplus, 0, 1 \rangle$ is the Boolean algebra given by

- (5) Show that in a Boolean algebra for any a, b.
 - (1) $a = b \Leftrightarrow (a * b') \oplus (a' * b) = 0$
 - (2) $a = 0 \Leftrightarrow (a * b') \oplus (a' * b) = b$
 - (3) $a \oplus (a' * b) = a \oplus b$
 - (4) $a * (a' \oplus b) = a * b$

Define a Boolean Algebra.

20

- 5. Attempt any **four** :
 - Define a group giving examples. Draw binary operation tables for groups of order 1, 2 and 3. Are they abelian ? Give an example of a group which is not abelian.
 - (2) Let $S = \{1, 2, 3\}$. Find all permutations on the set S. Prepare a composition table for the same.
 - (3) Define a permutation. What is a permutation group ?

If $P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3 \end{pmatrix}$,

express it in the form of product of disjoint cycles. Is it an even or an odd permutation ?

- (4) Define a subgroup. State Lagrange's theorem. What can you say about the subgroups of a group having prime order ? Explain.
- (5) Define a binary operation. What do you mean by closure property ? Is the set R of real numbers closed under addition ? Multiplication ? Division ? Explain. Is the set Z of integers closed under addition, multiplication or division ? Explain. Give an example of a set closed under some operation.