Seat No. : \qquad
DA-134
December-2013
5 Years M.Sc. Sem-III
Discrete Mathematics S Y M.Sc.
(CA-IT) Integrated (KS)
Time : 3 Hours]
[Max. Marks: 100
Instruction : Calculators are not allowed.

1. Attempt any four :
(1) Define PCNF and PDNF. Obtain PCNF and PDNF of the formula $(7 \mathrm{P} \rightarrow \mathrm{R}) \wedge(\mathrm{Q} \rightleftarrows \mathrm{P})$.
(2) Show that the conclusion 7P follows from the premises $R \rightarrow 7 Q, R \vee S, S \rightarrow 7 Q$, $\mathrm{P} \rightarrow \mathrm{Q}$ using indirect method of proof if needed.
(3) Show that $\{7, \rightarrow\}$ is functionally complete.
(4) Show that the following premises are inconsistent: P $\rightarrow \mathrm{Q}, \mathrm{Q} \rightarrow \mathrm{R}, \mathrm{S} \rightarrow 7 \mathrm{R}$ and $P \wedge S$.
(5) Define:
(i) Statement
(ii) Atomic Statement
(iii) Molecular Statement

If the truth values of P and Q are T and that of R and S are F , then find out the truth value of the following formula :
$(7(P \wedge Q) \vee 7 R) \vee(((7 P \wedge Q) \vee 7 R) \wedge S)$
2. Attempt any four :
(1) Let $\mathrm{X}=\{1,2,3,4,5\}$ and $\mathrm{R}=\{\langle x, \mathrm{y}\rangle \mid x-\mathrm{y}$ is divisible by 2$\}$. Show that R is an equivalence relation. Draw the graph of R and find M_{R}.
(2) Define any 4 types of retations giving examples.

Let $\mathrm{M}_{\mathrm{R}}=\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
What are the properties of relation R ?
(3) Show that (Fx) $\mathrm{M}(x)$ follows logically from the premises $(x)(\mathrm{H}(x) \rightarrow \mathrm{M}(x))$ and (Fx) $\mathrm{H}(x)$
(4) State one advantage of predicate calculus over statement calculus. Write the following statements using predicate formulas :
(1) Every two wheeler is a scooter.
(2) Every two wheeler that is a scooter is manufactured by Bajaj.
(3) There is a two wheeler that is not manufactured by Bajaj.
(4) There is a two-wheeler manufactured by Bajaj that is not a scooter.
(5) Let $\mathrm{X}=\{1,2,3,4\}$ and a relation R on X defined by $\mathrm{R}=\{<1,2\rangle,<4,3>,<2,2\rangle$, $<2,1>,<3,1>\}$

Is R transitive ? Reflexive ? Symmetric ? Find a set $S \supseteq R$ such that S is transitive. Justify.
3. Attempt any five :
(1) Define transitive closure of a relation.

Let $X=\{1,2,3\}$
$R=\{<1,2>,<2,3>,<3,1>\}$. Find the transitive closure of R.
(2) Draw the Hasse diagram for the relation $<\mathrm{P}(\mathrm{A}), \leq>$, where $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{P}(\mathrm{A})$ denotes the power set of A .
(3) What is a partition ?

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}\}$. Consider the following subsets of A :
$A_{1}=\{a, b, c, d\}, A_{2}=\{a, c, e, f, g, h\}$
$A_{3}=\{a, c, e, g\}, A_{4}=\{b, d\}$ and $A_{5}=\{f, h\}$
Which of the following are partitions of A ? $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}\right\},\left\{\mathrm{A}_{1}, \mathrm{~A}_{5}\right\}$ and $\left\{\mathrm{A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}\right\}$. Justify.
(4) Draw the Hasse diagram of $\left(\mathrm{S}_{36}, \mathrm{D}\right)$ where S_{36} denotes the set of positive divisors of 36 and D is relation "divides". Find the smallest and largest element of $\left(S_{36}, D\right)$ if it exists.
(5) Let $\{\mathrm{L}, \leq\}$ be a lattice. Show that for any a, b, c $\in \mathrm{L}$
$\mathrm{b} \leq \mathrm{c} \Rightarrow\left\{\begin{array}{l}\mathrm{a} * \mathrm{~b} \leq \mathrm{a} * \mathrm{c} \\ \mathrm{a} \oplus \mathrm{b} \leq \mathrm{a} \oplus \mathrm{c}\end{array}\right.$
Define a complemented lattice.
4. Attempt any four :
(1) Let $\mathrm{X}=\{1,2,3\}, \mathrm{Y}=\{\mathrm{a}, \mathrm{b}\}$. List all the functions from X to Y and indicate in each case whether the function is one-one, onto and is one-one onto. If X has m elements and Y has n elements, how many functions are possible from X to Y ?
(2) What is an atom and antiatom ? Obtain the product of sums canonical form of the Boolean expression $x_{1} * x_{2}$ having three variables x_{1}, x_{2} and x_{3}.
(3) Represent and minimize the given Boolean expression using a K-map and then sketch its circuit diagram using necessary logic gates.
(4) Give an expression $\alpha\left(x_{1}, x_{2}, x_{3}\right)$ defined to be $\oplus 0,3,5,7$ and determine the value of $\alpha(\mathrm{a}, \mathrm{b}, 1)$ where $\mathrm{a}, \mathrm{b}, 1 \in \mathrm{~B}$ and $<\mathrm{B}, *, \oplus, 0,1>$ is the Boolean algebra given by

(5) Show that in a Boolean algebra for any a, b.
(1) $\mathrm{a}=\mathrm{b} \Leftrightarrow\left(\mathrm{a} * \mathrm{~b}^{\prime}\right) \oplus\left(\mathrm{a}^{\prime} * \mathrm{~b}\right)=0$
(2) $\mathrm{a}=0 \Leftrightarrow\left(\mathrm{a} * \mathrm{~b}^{\prime}\right) \oplus\left(\mathrm{a}^{\prime} * \mathrm{~b}\right)=\mathrm{b}$
(3) $\mathrm{a} \oplus\left(\mathrm{a}^{\prime} * \mathrm{~b}\right)=\mathrm{a} \oplus \mathrm{b}$
(4) $\mathrm{a} *\left(\mathrm{a}^{\prime} \oplus \mathrm{b}\right)=\mathrm{a} * \mathrm{~b}$

Define a Boolean Algebra.
5. Attempt any four :
(1) Define a group giving examples. Draw binary operation tables for groups of order 1, 2 and 3. Are they abelian ? Give an example of a group which is not abelian.
(2) Let $S=\{1,2,3\}$. Find all permutations on the set S. Prepare a composition table for the same.
(3) Define a permutation. What is a permutation group ?

If $\mathrm{P}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3\end{array}\right)$,
express it in the form of product of disjoint cycles. Is it an even or an odd permutation?
(4) Define a subgroup. State Lagrange's theorem. What can you say about the subgroups of a group having prime order ? Explain.
(5) Define a binary operation. What do you mean by closure property ? Is the set \mathbb{R} of real numbers closed under addition ? Multiplication ? Division ? Explain. Is the set \mathbb{Z} of integers closed under addition, multiplication or division ? Explain. Give an example of a set closed under some operation.

