Seat No. : _____

ZA-105

April-2014

M.Sc., Sem.-IV

STA-507 : Statistics (Time Series Analysis & Applications)

Time : 3 Hours]

[Max. Marks: 70

Instruction : All questions carry equal marks.

1. (a) Suppose that five successive terms of the time series are given. Find trend using weighted moving average for $u_t = a_0 + a_1 t + a_2 t^2$. Make your comments if cubic is fitted instead of quadratic; state your general conclusion on it.

OR

Define stationary time series. How do you test the stationary of the given time series ?

- (b) Distinguish between :
 - (i) Ordinary and stationary time series
 - (ii) RWM with drift and without drift
 - (iii) Trend stationary and difference stationary stochastic process. Why random walk is said to have an infinite memory ?

OR

Explain the concept of "Unit Root Stochastic Process". Write different particular cases of the time series $y_t = \beta_1 + \beta_2 t + \beta_3 y_{t-1} + u_t$ where u_t is a white noise error term and t is time.

2. (a) Define periodic time series. What is periodogram ? Establish a relation between periodogram and the correlogram.

OR

In usual notations define auto covariance and auto correlation matrix. For n = 3, show that

$$\rho_i \le 1, i = 1, 2 \text{ and } -1 \le \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2} \le 1.$$

(b) Let $X_t = y \cos \theta t + z \sin \theta t$, where y and z are two uncorrelated random variables each with mean zero and variance unity and $\theta \in (-\pi, \pi)$. In usual notations obtain γ_k and ρ_k .

OR 1 P.T.O.

ZA-105

Explain the concept of ARIMA (p, d, q). Write the estimation procedure of the ARIMA model.

 (a) Explain the concepts of Multiplier and Accelerator in Economic models. Discuss Harrod-Domar growth model (periodic & derivative form) which make use of these concepts.

OR

Discuss Mahalanobis Two Sector Model.

(b) Explain 'Input-Output Analysis'. Discuss Leontief's inter industry closed system model and state its important properties.

OR

Discuss Samuelson-Hicks model of multiplier accelerator.

4. (a) For the 2nd order autoregressive series $u_{t+2} + a u_{t+1} + b u_t = \varepsilon_{t+2}$, |b| < 1 obtain correlogram r_k .

OR

For the series determined by $u_{t+2} = a u_t + \varepsilon_{t+1}$, |a| < 1

where ε has zero mean, find the correlogram if (i) successive values of ε are independent and (ii) if ε itself obeys a relation of the form.

 $\varepsilon_{t+1} = b \varepsilon_t + \eta_{t+1}$, |b| < 1, where successive values of η are independent.

(b) Let $X_t = y_t + Ay_{t-1}$, where $y_{t's}$ are independently and identically distributed with mean '0' and variance σ^2 . Show that X_t is weakly stationary time series.

OR

In usual notations for the harmonic series $u_t = A \sin \theta t + \varepsilon_t$ show that $r_k = (A^2/2) \cos \theta k (\sigma^2 + (A^2/2))^{-1}, k > 0.$

5. (a) Choose the appropriate answer :

(i) The variate difference method fails when

- (A) Cyclical component is present in the given time series.
- (B) Seasonal component is present in the given time series.
- (C) Random component is present in the given time series.
- (D) None of the above

ZA-105

- (ii) In testing the stationarity of the given time series using DF-test if the null hypothesis H : $\delta = 0$ is accepted then the time series is
 - (A) Non-stationary
 - (B) Stationary
 - (C) Oscillatory
 - (D) Harmonic
- (iii) Which of the following statement is true ?
 - (A) If a time series is stationary, then it is said to be integrated of order zero.
 - (B) If a time series is non-stationary, then it is said to be integrated of order zero.
 - (C) If a time series is stationary, then it is said to be integrated of order 'd'.
 - (D) If a time series is stationary, then it is said to unit root stochastic process.
- (iv) Which of the following statement is false?
 - (A) In testing the stationarity of the given time series using DF-test if the null hypothesis H : $\delta = 0$ is rejected then the time series is stationary.
 - (B) In testing the stationarity of the given time series using DF-test if the null hypothesis H : $\delta = 0$ is accepted then the time series is non-stationary.
 - (C) In testing the stationarity of the given time series using DF-test if $\rho = 1$ then the time series is non stationary.
 - (D) In testing the stationarity of the given time series using DF-test if $\rho < 1$ then the time series is not stationary.
- (v) Which of the following statement is true ?
 - (A) In the method of '2m' yearly moving average, two terms at the beginning and two terms at the end of the series would not be determined.
 - (B) In the method of '2m' yearly moving average; 'm' terms at the beginning and 'm' terms at the end of the series would not be determined.
 - (C) In the method of '2m + 1' yearly moving average; 'm' terms at the beginning and 'm +1' terms at the end of the series would not be determined.
 - (D) In the method of '2m + 1' yearly moving average; 'm + 1' terms at the beginning and 'm + 1' terms at the end of the series would not be determined.

- (vi) Which of the following statement is false?
 - (A) The method of moving average has no effect on the Oscillatory component.
 - (B) The series obtained after elimination of trend will not be free of oscillations.
 - (C) In the method of moving average most of the primary oscillation in the original time series will be eliminated as trend.
 - (D) Using correlogram analysis we can know that cause of oscillation in the given time series.
- (vii) Which of the following statement is true ?
 - (A) If by trial sometimes we get $\mu = \lambda$, the intensity function takes high values, otherwise the value is very small.
 - (B) If by trial sometimes we get $\mu < \lambda$, the intensity function takes high values, otherwise the value is very small.
 - (C) If by trial sometimes we get $\mu > \lambda$, the intensity function takes high values, otherwise the value is very small.
 - (D) If by trial sometimes we get $\mu \neq \lambda$, the intensity function takes high values, otherwise the value is very small.
- (b) Answer the following questions :
 - (i) Define periodic time series.
 - (ii) Define integrated stochastic process of order d.
 - (iii) Define Intensity function.
 - (iv) Define ARIMA (1,1,1).
 - (v) What is Buys-Ballot Table ?
 - (vi) What is Detrending ?
 - (vii) Define Correllogram

ZA-105