Seat No. : _____

LE-106 April-2014

B.Sc. Semester – VI

CC-308 : Statistics

(Statistical Inference)

Time : 3 Hours]

[Max. Marks : 70

Instructions :	(i)	Attempt all questions.							
	(ii)	Each question carries equal marks.							

1. (a) Define most powerful test. State and prove Neymann-Pearson lemma for obtaining most powerful test. 7

OR

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from normal population with mean μ and variance σ^2 . Test for μ when σ is known. Obtain best critical region for testing $H_0: \mu = \mu_0$ Vs. $H_1: \mu = \mu_1$. Where $\mu_1 < \mu_0$

(b) Given the p.d.f.
$$f(x, \theta) = \frac{1}{\theta}, 0 < x < \theta$$

= 0 otherwise.

Suppose we want to test $H_0: \theta = 1.5$ vs. $H_1: \theta = 2.5$ by means of a single observed value of x. Obtain the size of the type-I and type-II errors, if you choose $0.8 \le x$ as the critical region. Also, find power function of the test.

OR

Let x follows Binomial distribution with parameters n and p. Where n = 5. Suppose we wish to test the hypothesis H_0 : p = $\frac{1}{2}$ against H_1 : p = $\frac{3}{4}$. Obtain most powerful critical region at (i) $\alpha = \frac{1}{32}$ and (ii) $\alpha = \frac{6}{32}$

2. (a) Describe likelihood ratio test.

OR

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample of size n from N(μ, σ^2), where μ and σ^2 are unknown. Obtain likelihood ratio test for testing $\mu = \mu_0$ Vs. $\mu \neq \mu_0$.

(b) Let $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$, where $\sigma_1^2 = \sigma_2^2 = \sigma^2$. Derive likelihood ratio test for the equality of means of two normal populations. 7

OR

Let $X_1, X_2, X_3, \dots, X_n$ be a random sample of size n from N(μ, σ^2). Describe the test for testing the hypothesis $H_0: \sigma^2 = \sigma_0^2$ (specified) Vs. $H_1: \sigma^2 \neq \sigma_0^2$.

LE-106

7

P.T.O.

7

3. (a) What is meant by non-parametric tests ? Clear the difference between parametric and non-parametric test.

OR

Explain Wilcoxon's signed rank test in detail.

(b) Use sign test at 5% level of significance for testing the null hypothesis that the samples given are drawn from the same population :

Sample – 1	10.6	5.3	11.8	7.6	10.8	12.3	6.3	7.2	10.6
Sample – 2	9.3	3.4	13.9	11.4	10.4	11.7	4.2	9.3	8.7

OR

The following are the weight gains (in pounds) of two random samples of young birds fed two different diets and other conditions were kept identical :

Diet - 1	16.3	10.1	10.7	13.5	14.9	11.8	14.3	12	14.7	23.6	15.1	14.5	18.4	13.2	14	10.2
Diet – 2	21.3	23.8	15.4	19.6	12	13.9	18.8	15.3	20.1	14.8	18.9	20.7	21.1	15.8	16.2	19.2

Use U-test at 0.01 level of significance to test the null hypothesis that the two populations sampled are identical against that on the average the second diet produces a greater gain in weight.

4. (a) Give complete statistical analysis of m×m Latin square design.

OR

Explain randomized block design in detail.

(b) Why confounding technique is adopted in factorial experiment ? Explain partial confounding in 2³ factorial experiments.

OR

What is factorial experiment ? Construct 2^2 factorial experiment and explain its analysis.

- 5. Answer the following objectives :
 - (1) Define statistical hypothesis and its types.
 - (2) State any two characteristics of likelihood ratio test.
 - (3) State any two advantages of factorial design.
 - (4) Give statistical formulae for the efficiency of LSD over RBD and CRD.
 - (5) State any two applications of non-parametric tests.
 - (6) State the assumptions for applying non-parametric tests.
 - (7) Define contrast and orthogonal contrast in factorial design.

14

7

7

7