Seat No. :

\qquad

DA-133

December-2013

5 Years M.Sc (CA \& IT) Integrated (K.S.)
 Sem-I (F.Y. M.Sc.)
 CC-115 : MATHEMATICAL CONCEPTS

Time : 3 Hours]
[Max. Marks : 100

1. (A) (a) The vertices of a triangle are $(1, a)(2, b)$ and $\left(c^{2},-3\right)$, prove that its centroid cannot lie on the y-axis.
(b) The co-ordinate of two points A and B are $(3,4)$ and $(5,-2)$ respectively. Find the co-ordinates of any point P if $\mathrm{PA}=\mathrm{PB}$ and are of $\triangle \mathrm{APB}$ is 10 .
(c) Prove that the points $(a, b+c),(b, c+a)$ and $(c, a+b)$ are collinear.
(a) Prove that in a right angled triangle the mid point of the hypotenuse is equidistant from its vertices.
(b) Find the co-ordinates of incentre of the triangle whose vertices are $(4,-2),(-2,4)$ and $(5,5)$.
(c) The vertices of a triangle are $A(10,4), B(-4,9)$ and $C(-2,-1)$. Find the equation of the altitude through A.
(B) (a) The angle between two lines is $\frac{\pi}{4}$ and the slope of one of them is $\frac{1}{2}$. Find the slope of the other line.
(b) If the straight line $y=m x+c$ passes through the points $(2,4)$ and $(-3,6)$, find the values of m and c.

OR

(a) A line passes through the points $A(2,-3)$ and $B(6,3)$. Find the slopes of lines which are (i) parallel to AB line and (ii) perpendicular to AB line.
(b) For what value of k the points $(k, 2-2 k),(-k+1,2 k)$ and $(-4-k, 6-2 k)$ are collinear?
2. (A) (a) Prove that $\sin \frac{10 \pi}{3} \cos \frac{11 \pi}{6}+\cos \frac{2 \pi}{3} \sin \frac{5 \pi}{6}=-1$.
(b) Prove that $\cos 10^{\circ}+\cos 50^{\circ}+\cos 70^{\circ}+\cos 110^{\circ}+\cos 130^{\circ}+\cos 170^{\circ}=0.4$
(c) Prove that $\sin \left(45^{\circ}+\theta\right) \sin \left(45^{\circ}-\theta\right)=\frac{1}{2} \cos 2 \theta$.
(a) Show that $\sin ^{2}\left(51^{\circ}+\theta\right)+\sin ^{2}\left(39^{\circ}-\theta\right)=1$.
(b) If $\triangle \mathrm{ABC}$ is a right angled triangle then show that $\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}=2$.
(c) Prove that $8 \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}=1$.
(B) (a) Prove that $\frac{\sin 3 \theta}{1+2 \cos 2 \theta}=\sin \theta$ and hence find the value of $\sin 15^{\circ}$.
(b) Solve : $4 \sin ^{2} 2 \theta-3=0$.

4

4

OR

(a) Express $\sin 5 \theta$ in terms of $\sin \theta$.
(b) The angle of elevation of the top of a temple as observed from the foot of a tower is 60°, whereas the angle of elevation of the top of the tower as observed from the foot of the temple is 30°. If the tower is 50 m high, find the height of the temple.
3. (A) (a) Show that $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{1 / x}-1}{\mathrm{e}^{1 / x}+1}$ does not exist.
(b) If $\mathrm{f}(x)=\left\{\begin{array}{c}2 x+3 \text {, when } x<0 \\ 0, \text { when } x=0 \\ x^{2}+3, \text { when } x>0\end{array}\right.$ Discuss the continuity.
(c) If $y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\ldots \infty}}}$ then show that $\frac{\mathrm{dy}}{\mathrm{d} x}=\frac{\sin x}{1-2 \mathrm{y}}$.

OR
(a) Evaluate $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+x}\right)$.
(b) If $\mathrm{y}=\mathrm{e}^{\left(\tan ^{-1} x\right)^{3}}$, find $\frac{\mathrm{dy}}{\mathrm{d} x}$.
(c) If $y=x^{\sin x}$, find $\frac{\mathrm{dy}}{\mathrm{d} x}$.
(B) (a) If $x=\mathrm{a}(\mathrm{t}+\sin \mathrm{t})$ and $\mathrm{y}=\mathrm{a}(1-\cos \mathrm{t})$, find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}$.
(b) If $y=x^{x}$, prove that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{1}{y}\left(\frac{\mathrm{dy}}{\mathrm{d} x}\right)^{2}-\frac{\mathrm{y}}{x}=0$.

OR

(a) If $\mathrm{y}=\mathrm{e}^{x} \tan x+x \log _{\mathrm{e}} x$, find $\frac{\mathrm{dy}}{\mathrm{d} x}$.
(b) If $\mathrm{y}=\sqrt{\frac{1-x}{1+x}}$, prove that $(1-x)^{2} \frac{\mathrm{dy}}{\mathrm{d} x}+\mathrm{y}=0$.
4. (A) (a) Evaluate : $\int \frac{1}{1+\sin x} \mathrm{~d} x$.
(b) Evaluate : $\int \frac{x^{\mathrm{e}-1}+\mathrm{e}^{x-1}}{x^{\mathrm{e}}+\mathrm{e}^{x}} \mathrm{~d} x$.
(c) Evaluate : $\int x \sqrt{x^{2}+\mathrm{a}^{2}} \mathrm{~d} x$.

OR

(a) Evaluate : $\int \frac{1}{\sqrt{x}} \cos \sqrt{x} \mathrm{~d} x$.
(b) Evaluate : $\int \frac{\mathrm{d} x}{x\left[1+(\log x)^{2}\right]}$.
(c) Evaluate : $\int \frac{1-\operatorname{Sin} x}{x+\cos x} \mathrm{~d} x$.
(B) (a) Evaluate : $\int x \tan ^{2} x d x$.
(b) Evaluate : $\int \frac{\mathrm{d} x}{x-x^{3}}$.
OR
(a) Evaluate : $\int \frac{x \mathrm{e}^{x}}{(x+1)^{2}} \mathrm{~d} x$.
(b) Evaluate : $\int \frac{x^{2}}{(x-1)^{2}\left(x^{2}+1\right)} \mathrm{d} x$.
5. (A) (a) Determine the power series for $\tan x$ as far as the term in x^{3}.
(b) Find the area of region bounded by $x=3 y^{2}-9, y$-axis and the lines $y=0$ and $\mathrm{y}=1$.
(c) Define order and degree of a differential equation with example.
(a) Expand $\ln (1+x)$ to five terms.
(b) Find the area included between the curves $\mathrm{y}^{2}=4 \mathrm{a} x$ and $x^{2}=4 \mathrm{ay}$.
(c) Determine the degree and the order of the following differential equations.
(i) $\left(\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{d} x^{3}}\right)^{2}+2 \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{d} x}+x^{2}\left(\frac{\mathrm{dy}}{\mathrm{d} x}\right)^{3}=0$.
(ii) $\sqrt{\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}}=3 \cdot \frac{\mathrm{dy}}{\mathrm{d} x}+x$.
(B) (a) Find the general solution of the differential equation :

$$
2 x\left(1+y^{2}\right) \mathrm{d} x-y\left(1+2 x^{2}\right) \mathrm{dy}=0
$$

(b) Find the general solution of the differential equation :

$$
x^{2} y \frac{\mathrm{~d} x}{\mathrm{dy}}=x^{3}+\mathrm{y}^{3} .
$$

OR

(a) Find the general and particular solution of the differential equation :

$$
\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0 \text { and } x=\frac{\pi}{4} \Rightarrow y=0
$$

(b) Find the general solution of the differential equation :

$$
\left(x^{2}-y^{2}\right) \mathrm{d} x=2 x y \mathrm{dy}
$$

