\qquad

LD-129

April-2014

F.Y. M.B.A. (KS) (Integrated)

Basic Mathematics

Time : 3 Hours]
[Max. Marks : 100

Instructions : (1) Non-programmable scientific calculators are allowed.
(2) Attempt questions in sequence and answer fresh question on fresh page.
(3) Graph paper shall be provided on demand.

1. Attempt any two :
(a) Find the domain and range of the function

$$
\mathrm{f}(x)=\frac{1}{\sqrt{x^{2}-1}}
$$

(b) Define greatest integer function and draw its graph.
(c) For a new product, a manufacturer sets up an infrastructure which costs him $₹ 1,50,000$. The variable cost is estimated at $₹ 125$ for each unit of the product. The sale price per unit is fixed at $₹ 160$. How many minimum number of units are to be produced in the first year of production so that there may be no loss during that year?
2. Attempt any four :
(i) $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)$
(ii) $\lim _{x \rightarrow \infty}\left(1-\frac{4}{x}\right)^{x}$
(iii) $\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}$
(iv) $\lim _{x \rightarrow \infty} \sqrt{x+1}-\sqrt{x}$
(v) If $f(y)= \begin{cases}\frac{|y|}{y} & ; \\ & y \neq 0 \\ 0 & ;\end{cases}$

Discuss the continuity at $\mathrm{y}=0$.
P.T.O.
3. (a) Attempt any two :
(i) Differentiate w.r.t. x, the function

$$
\frac{(x+1)(2 x-1)}{(x-3)}
$$

(ii) Differentiate w.r.t. x,

$$
y=\log (x \cos x)
$$

(iii) Let $\mathrm{y}=\mathrm{e}^{\tan x}$
$\mathrm{z}=\sin x$
find $\frac{d y}{d z}$
(b) A monopolist's demand function is $\mathrm{p}=300-5 x$. Find
(i) the marginal revenue function
(ii) at what price is the marginal revenue zero.
4. (a) Show that the maximum value of $x+\frac{1}{x}$ is less than its minimum value.
(b) Suppose a manufacturer can sell x items per week at a price $\mathrm{P}=20-0.001 x$ rupees each when it costs $\mathrm{y}=5 x+2000$ rupees to produce x items. Determine the number of items he should produce per week for maximum profit.
5. (a) Prove that

$$
\left|\begin{array}{ccc}
a+b+2 c & a & b \\
c & b+c+2 a & b \\
c & a & c+a+2 b
\end{array}\right|=2(a+b+c)^{2}
$$

(b) A manufacturer produces two types of products X and Y . Each product is first processed in a Machine M_{1} and then sent to another machine M_{2} for finishing. Each unit of X requires 20 minutes time on M_{1} and 10 minutes time on M_{2} whereas each unit of Y requires 10 minutes time on M_{1} and 20 minutes time on M_{2}. The total time available on each machine is 600 minutes. Calculate the number of units of two types of products produced by matrix algebra.

