XY-111

April-2013

M.Sc. (Sem.-II)

Mathematics: 408
(Algebra - I)
Time : 3 Hours]
[Max. Marks : 70
Instruction: (1) There are five questions.
(2) Each question carry equal 14 marks.

1. (a) Prove that disjoint cycle commute.

OR

Prove that for any $n, U(n)$ is isomorphic to $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$.
(b) Attempt any two :
(1) Prove that $(\mathrm{Q},+)$ is not isomorphic to $\left(\mathrm{R}^{+}, *\right)$.
(2) Let G be a group. Prove or disprove : $H=\left\{g^{2} / g \in G\right\}$ is a subgroup of G.
(3) Suppose G is an Abelian group with order $(2 n+1)$, show that the product of all the elements of G is the identity.
(c) Attempt all :
(1) How many elements of order 2 are there in A_{5} ?
(2) If $\alpha, \beta \in S_{n}$ prove that $\alpha^{-1}, \beta^{-1} \alpha \beta$ is even.
(3) Prove or disprove : $U(8)$ is isomorphic to $U(12)$.
2. (a) Let G and H be finite cyclic groups. Then prove that $\mathrm{G} \oplus \mathrm{H}$ is cyclic if and only if $|\mathrm{G}|$ and $|\mathrm{H}|$ are relatively prime.

Let G be a finite Abelian group and let p be a prime that divides $|\mathrm{G}|$. Prove that G has an element of order p.
(b) Attempt any two :
(1) Prove or disprove : $\mathbb{Z} \oplus \mathbb{Z}$ is cyclic.
(2) Let $G=\left\{3^{\mathrm{m}} 6^{\mathrm{n}} \mid \mathrm{m}, \mathrm{n} \in \mathbb{Z}\right\}$ under multiplication prove that G is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.
(3) Let $\mathrm{G}=\mathrm{U}(32)$ and $\mathrm{K}=\{1,15\}$, prove that G / K is isomorphic to \mathbb{Z}_{8}.
(c) Attempt all :
(1) Find the last two digits of 23^{123}.
(2) What is the largest order of any element in $\mathbb{Z}_{30} \oplus \mathbb{Z}_{20}$?
(3) Prove that the centre $Z(G)$ of group G is always a normal subgroup of G.
3. (a) Define Internal direct product of H and K . Express $\mathrm{U}(105)$ as a direct product of two subgroups H, K.

OR

Let ϕ be a homomorphism from a group to a group $\overline{\mathrm{G}}$ and let $\mathrm{g} \in \mathrm{G}$. If $|\mathrm{g}|=\mathrm{n}$ then prove that $|\phi(\mathrm{g})|$ divides n .
(b) Attempt any two :
(1) Determine all homeomorphisms from \mathbb{Z}_{n} to itself.
(2) What is the smallest positive integer n such that there are exactly 4 non-isomorphic Abelian groups of order n.
(3) Find all Abelian groups (upto isomorphism) of order 360.
(c) Attempt all :
(1) Let $G=D_{n}$. Find a homomorphism from D_{n} to the multiplicative group $\{1,-1\}$.
(2) Define f from \mathbb{Z}_{12} to \mathbb{Z}_{10} by $\mathrm{f}(\mathrm{n})=3 \mathrm{n}$. Is f a homomorphism ? Explain.
(3) Determine the isomorphism class of $\mathrm{U}(12)$.
4. (a) State and prove Sylow's first theorem.

OR

If G is a group of order pq , where p and q are primes, $\mathrm{p}<\mathrm{q}$ and p does not divide ($q-1$) then prove that G is cyclic.
(b) Attempt any two :
(1) Determine the groups of order qq.
(2) If a group G has only one p-Sylow subgroup, prove that the subgroup is normal.
(3) Prove that a non-cyclic group of order 21 must have 14 elements of order 3.
(c) Attempt all :
(1) What is the smallest possible odd integer that can be the order of a nonAbelian group?
(2) Prove that conjugacy is an equivalence relation.
(3) How many 3-Sylow subgroups does S_{5} have?
5. (a) Let n be a positive integer that is not prime, and let p be a prime divisor of n. If 1 is the only divisor of n that is congruent to 1 modulo p, then prove that there does not exist a simple group of order n.

OR

Define simple group. Prove that A_{5} is simple.
(b) Attempt any two :
(1) If $|\mathrm{G}|=112$, prove that G cannot be simple.
(2) Show that for $n \geq 3, S_{n}$ is not simple.
(3) State (without proof) Index theorem and Embedding theorem.
(c) Attempt all :
(1) If $|G|=p, p$ prime prove that G is simple.
(2) If $|G|=p^{2}$, p prime, prove that $\mathrm{Z}(4)$ is non-trivial.
(3) Does there exists a simple non-Abelian group of order 168 ?

