

Seat No. : _____

XY-111

April-2013

M.Sc. (Sem.-II)

Mathematics : 408

(Algebra – I)

Time: 3 Hours]

[Max. Marks: 70

7

4

3

Instruction: (1) The	nere are five questions.
-----------------------------	---------------------------------

(2) Each question carry equal **14** marks.

1. (a) Prove that disjoint cycle commute. **OR** Prove that for any n, U(n) is isomorphic to $Aut(\mathbb{Z}_n)$.

(b) Attempt any **two** :

- (1) Prove that (Q, +) is not isomorphic to $(R^+, *)$.
- (2) Let G be a group. Prove or disprove : $H = \{g^2 / g \in G\}$ is a subgroup of G.
- (3) Suppose G is an Abelian group with order (2n + 1), show that the product of all the elements of G is the identity.

(c) Attempt all :

- (1) How many elements of order 2 are there in A_5 ?
- (2) If $\alpha, \beta \in S_n$ prove that $\alpha^{-1}, \beta^{-1} \alpha \beta$ is even.
- (3) Prove or disprove : U(8) is isomorphic to U(12).
- 2. (a) Let G and H be finite cyclic groups. Then prove that $G \oplus H$ is cyclic if and only if |G| and |H| are relatively prime. 7

OR

Let G be a finite Abelian group and let p be a prime that divides |G|. Prove that G has an element of order p.

(b) Attempt any **two** :

- (1) Prove or disprove : $\mathbb{Z} \oplus \mathbb{Z}$ is cyclic.
- (2) Let $G = \{3^m 6^n \mid m, n \in \mathbb{Z}\}$ under multiplication prove that G is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.
- (3) Let G = U(32) and $K = \{1, 15\}$, prove that G/K is isomorphic to \mathbb{Z}_8 .
- (c) Attempt all :
 - (1) Find the last two digits of 23^{123} .
 - (2) What is the largest order of any element in $\mathbb{Z}_{30} \oplus \mathbb{Z}_{20}$?
 - (3) Prove that the centre Z(G) of group G is always a normal subgroup of G.

4

3

two subgroups H, K. OR

Let ϕ be a homomorphism from a group to a group \overline{G} and let $g \in G$. If |g| = n then prove that $|\phi(g)|$ divides n.

Define Internal direct product of H and K. Express U(105) as a direct product of

(b) Attempt any two :

3.

(a)

- (1) Determine all homeomorphisms from \mathbb{Z}_n to itself.
- (2)What is the smallest positive integer n such that there are exactly 4 non-isomorphic Abelian groups of order n.
- Find all Abelian groups (upto isomorphism) of order 360. (3)
- (c) Attempt all :
 - Let $G = D_n$. Find a homomorphism from D_n to the multiplicative group $\{1, -1\}$. (1)
 - Define f from \mathbb{Z}_{12} to \mathbb{Z}_{10} by f(n) = 3n. Is f a homomorphism ? Explain. (2)
 - Determine the isomorphism class of U(12). (3)
- 4. State and prove Sylow's first theorem. (a)

OR

If G is a group of order pq, where p and q are primes, p < q and p does not divide (q-1) then prove that G is cyclic.

- Attempt any two : (b)
 - Determine the groups of order qq. (1)
 - (2)If a group G has only one p-Sylow subgroup, prove that the subgroup is normal.
 - (3) Prove that a non-cyclic group of order 21 must have 14 elements of order 3.
- (c) Attempt all :
 - What is the smallest possible odd integer that can be the order of a non-(1)Abelian group ?
 - (2)Prove that conjugacy is an equivalence relation.
 - How many 3-Sylow subgroups does S₅ have ? (3)
- 5. (a) Let n be a positive integer that is not prime, and let p be a prime divisor of n. If 1 is the only divisor of n that is congruent to 1 modulo p, then prove that there does not exist a simple group of order n. 7

OR

Define simple group. Prove that A_5 is simple.

- (b) Attempt any **two** :
 - (1)If |G| = 112, prove that G cannot be simple.
 - Show that for $n \ge 3$, S_n is not simple. (2)
 - State (without proof) Index theorem and Embedding theorem. (3)
- (c) Attempt all :
 - If |G| = p, p prime prove that G is simple. (1)
 - If $|G| = p^2$, p prime, prove that Z(4) is non-trivial. (2)
 - Does there exists a simple non-Abelian group of order 168? (3)

2

4

3

7

4

7

3

4

3