\qquad

XX-136

M.Sc. (Sem. IV) (CBCS)

April-2013

507 - Mathematics

(Functional Analysis-II)
Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) Each question carries equal 14 marks.
(2) Follow usual notations.

1. (a) Let H be a Hilbert space and $\mathrm{T} \in \mathrm{BL}(\mathrm{H})$, prove that there is a unique mapping T^{*} from H into H (called the adjoint of T) which satisfies the relation $\langle\mathrm{T} x, \mathrm{y}\rangle=$ $<x, \mathrm{~T}^{*} \mathrm{y}>$ for all $x, \mathrm{y} \in \mathrm{H}$.

OR

Prove that the adjoint operation $\mathrm{T} \rightarrow \mathrm{T}^{*}$ on $\mathrm{BL}(\mathrm{H})$ has the following properties :
(i) $\left\|\mathrm{T}^{*}\right\|=\|\mathrm{T}\|$
(ii) $\left\|\mathrm{T}^{*} \mathrm{~T}\right\|=\|\mathrm{T}\|^{2}$
(b) Attempt any two :
(1) If $\mathrm{T} \in \mathrm{BL}(\mathrm{H})$ is self-adjoint and $\mathrm{T} \neq 0$, then prove that $\mathrm{T}^{\mathrm{n}} \neq 0$ for $\mathrm{n}=2,4,8$, 16,
(2) Show that any $T \in B L(H)$ can be uniquely written as $T=T_{1}+i T_{2}$, where T_{1} and T_{2} are self-adjoint.
(3) If T is a self-adjoint operator on H , show that $\|\mathrm{T}\|=\sup \left\{\frac{\left|<\mathrm{T}_{x}, x\right\rangle \mid}{\|x\|^{2}} / x \neq 0\right\}$.
(c) Attempt all :
(1) Let H be a Hilbert space over \mathbb{R} and $T \in B L(H)$. Show that T is self-adjoint $\Leftrightarrow\langle\mathrm{T} x, \mathrm{y}\rangle=\langle\mathrm{Ty}, x\rangle$ for all $x \in \mathrm{H}$.
(2) Let $H=\not \subset^{3}$ and $A \in B L(H)$ defined by the matrix $M=\left(\begin{array}{ccc}1 & a & 0 \\ i & 1 & 0 \\ 0 & 0 & i\end{array}\right)$. Find values of a, if any, such that A is self-adjoint.
(3) If A, B are self-adjoint, prove that $A B$ is self-adjoint $\Leftrightarrow A B=B A$.
2. (a) Prove that the set of all normal operators in $\mathrm{BL}(\mathrm{H})$ is a closed subset of $\mathrm{BL}(\mathrm{H})$. Is it a linear subspace of $\mathrm{BL}(\mathrm{H})$?

OR

Define positive operator. If A is a positive operator on H , prove that $\mathrm{I}+\mathrm{A}$ is invertible.
(b) Attempt any two :
(1) Show that an isometric operator $\mathrm{T} \in \mathrm{BL}(\mathrm{H})$ which is not unitary maps H onto a proper closed subspace of H .
(2) If P and Q are projections on closed linear subspaces M and N respectively. Then prove that following are equivalent :
(i) $\mathrm{PQ}=\mathrm{P}$
(ii) $\mathrm{M} \subseteq \mathrm{N}$
(iii) $\mathrm{P} \leq \mathrm{Q}$
(3) If M is a closed linear subspace of H and M is invariant under $T \in B L(H)$, then prove that M^{\perp} is invariant under T^{*}.
(c) Attempt all :
(1) Give an operator on \mathbb{R}^{2} that is self-adjoint but not positive.
(2) If P and Q are projections, under which condition $\mathrm{P}+\mathrm{Q}$ is also a projection ?
(3) If $U \in B L(H)$ is unitary, what is the value of $\|U\|$?
3. (a) Show that the mapping $\mathrm{T} \rightarrow$ [T] is a one one onto map from the set of all operators onto the set of all matrices.

OR

If H is a finite dimensional complex Hibert space and $T \in B L(H)$, prove that $\sigma(T)$ is non-empty.
(b) Attempt any two :
(1) If $\mathrm{T} \in \mathrm{BL}(\mathrm{H})$, then prove that $\lambda \in \sigma(\mathrm{T})$ if and only if $\lambda^{-1} \in \sigma\left(\mathrm{~T}^{-1}\right)$.
(2) If $\mathrm{T}^{\mathrm{k}}=0$ for some k then show that $\sigma(\mathrm{t})=\{0\}$.
(3) Give an operator on \mathbb{R}^{2} whose spectrum is empty.
(c) Attempt all :
(1) Give an operator on $\not \subset^{2}$ whose spectrum is $\{\mathrm{i}\}$.
(2) Give three square roots of $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(3) If T is normal then prove that x is an eigen vector of T with respect to eigen value λ then x is an eigen vector of T^{*} with respect to eigen value $\bar{\lambda}$.
4. (a) Let X be a Banach space and $A \in B L(X)$. Prove that A is invertible if A is bounded below and the range of A is dense in X .

OR

Let X be a Banach space over K and $A \in B L(X)$. Prove that the spectrum $\sigma(A)$ is a compact subset of K.
(b) Attempt any two :
(1) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(x, y)=(0, y)$. Find $\sigma(T)$.
(2) Let $\mathrm{X}=\mathrm{C}[\mathrm{a}, \mathrm{b}]$ with sup norm. For a fix $x_{0} \in \mathrm{X}$ and $x \in \mathrm{X}$, define $\mathrm{A}(x)=x_{0} x$. Find the eigen spectrum $\sigma_{e}(A)$ of A.
(3) Find the spectrum $\sigma(\mathrm{T})$ of $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\mathrm{T}(x, y)=(2 x, 2 \mathrm{y})$
(c) Attempt all :
(1) Define approximate eigen spectrum $\sigma_{a}(A)$ of $A \in B L(X)$. Give a characterization (without proof) of approximate eigen values of A.
(2) If A is of finite rank, then prove that $A-K I$ is invertible $\Leftrightarrow A-K I$ is one-one.
(3) Find the spectrum of the zero operator and the identity operator on X. (Here, X is a non-zero normed linear space).
5. (a) Prove that $\mathrm{A} \in \mathrm{BL}(\mathrm{X})$ is a compact linear map if and only if for every bounded sequence $\left(x_{\mathrm{n}}\right)$ in $\mathrm{X},\left(\mathrm{T}\left(x_{\mathrm{n}}\right)\right)$ has a convergent subsequence.

OR

If X is a normed linear space and $\mathrm{A} \in \mathrm{CL}(\mathrm{X})$ (that is A is compact map) then prove that $0 \in \sigma_{a}(A)$ whenever X is infinite dimensional.
(b) Attempt any two :
(1) If A and B are compact linear maps on a normed linear space X, prove that $\mathrm{A}+\mathrm{B}$ is compact.
(2) Prove that any functional on a normed linear space is compact.
(3) Give an operator $A \in B L(X)$ such that $\sigma(A) \neq \sigma\left(A^{\prime}\right)$, where A^{\prime} denote the transpose of A.
(c) Attempt all :
(1) If X is an infinite dimensional normed linear space, for what values of $\alpha, \alpha \mathrm{I}$ is compact?
(2) Is $\mathrm{A}: l^{2} \rightarrow l^{2}$ defined by $\mathrm{A}\left(\mathrm{e}_{\mathrm{n}}\right)=\mathrm{e}_{\mathrm{n}+1}$ compact ? Why ?
(3) True or false : $\mathrm{CL}(\mathrm{X})$ is closed in $\mathrm{BL}(\mathrm{X})$. Give reason.

