Seat No. : _____

XB-125

T.Y.B.Sc. March-2013

Mathematics : Paper – VIII

(Analysis - II)

[Max. Marks: 105

18

Time: 3 Hours]

1. (a) Attempt any **three :**

- (1) Prove that monotonic decreasing bounded below sequence is convergent.
- (2) Let (S_n) be a bounded sequence of real numbers. If $\lim_{n \to \infty} \sup S_n = M$ then prove that for any $\epsilon > 0$.
 - (i) $S_n < M + E$ for all except a finite number of values of n.
 - $(ii) \quad S_n > M \in \mbox{ for infinitely many values of } n.$
- (3) If $\lim_{n \to \infty} t_n = M$ where $M \neq 0$, then prove that $\lim_{n \to \infty} \frac{1}{t_n} = \frac{1}{M}$
- (4) If $S_1 = \sqrt{2}$ and $S_{n+1} = \sqrt{2}\sqrt{S_n}$ for $n \ge 1$, prove that (S_n) is a monotonic increasing sequence bounded above and $\lim_{n \to \infty} S_n = 2$.
- (5) Prove that the sequence defined by the relation $S_{n+2} = \frac{1}{2} (S_{n+1} + S_n)$ converges provided that $S_1 \neq S_2$.

(b) Find the $\lim_{n \to \infty} \sup_{n \to \infty} \sup_{n \to \infty} \inf_{n \to \infty} S_n$ for the sequence $S_n = (-1)^n \left(1 + \left(\frac{1}{n} \right) \right)$. **3**

2. (a) State and prove Weierstrass M-test.

OR

If $\sum a_n$ is a series of non-negative numbers which converges to $A \in R$ and $\sum b_n$ is rearrangement of $\sum a_n$, then prove that $\sum b_n$ is convergent and $\sum b_n = A$.

XB-125

6

- (b) Attempt any **two**:
 - (1) Prove that $1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$ converges.
 - (2) Prove that the series $\sum (-1)^n \left[\sqrt{n^2 + 1} n\right]$ is conditionally convergent. (3) Discuss the uniform convergence of sequence of further
 - (3) Discuss the uniform convergence of sequence of function $f_n(x) = \frac{nx}{1 + n^2 x^2} (-\infty < x < \infty).$

(c) Discuss the convergence of
$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$
. 3

- 3. (a) Attempt any **three :**
 - (1) If $g \in R$ [a, b] then prove that $\frac{1}{g} \in R$ [a, b], where g is bounded away from zero.
 - (2) State and prove first fundamental theorem of calculus.
 - (3) Let g be continuous function on [a, b] and f has a derivative which is continuous and never changes sing on [a, b]. Then prove that for some $C \in [a, b] \int_{a}^{b} f(x) g(x) dx = f(a) \int_{a}^{c} g(x) dx + f(b) \int_{c}^{b} g(x) dx.$
 - (4) If $f \in R$ [a, b] then prove that $|f| \in R$ [a, b]. Also, prove that

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$
Brown that

(5) Prove that

$$\frac{\pi^3}{24} \le \int_{0}^{\pi} \frac{x^2}{5+3\cos x} \, \mathrm{d}x \le \frac{\pi^3}{6}$$

(b) Give an example of a function which is bounded on [a, b] but not Riemann integrable. **3**

4. (a) Let f be a non-increasing function on $[1, \infty)$ such that $f(x) \ge 0$ for $1 \le x < \infty$. Then

prove that
$$\sum_{n=1}^{\infty} f(n)$$
 converges if $\int_{1}^{\infty} f(x)dx$ converges and $\sum_{n=1}^{\infty} f(n)$ diverges if $\int_{1}^{\infty} f(x)dx$ diverges.

(a) Test for convergence :

(1)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$$

(2) $\int_{0}^{\infty} \frac{1}{x^3+x^{1/3}} dx$

XB-125

12

18

- (b) Attempt any **two**:
 - (1) Let $f(x) = \sum a_n x^n$ be a power series with radius of convergence 1. If the series converges at 1, then prove that $\lim_{x \to 1^-} f(x) = f(1)$.
 - (2) Prove that for $-1 < x \le 1$

$$\frac{1}{2} (\tan^{-1}x)^2 = \frac{x^2}{2} - \frac{x^4}{4} \left(1 + \frac{1}{3}\right) + \frac{x^6}{6} \left(1 + \frac{1}{3} + \frac{1}{5}\right) + \dots$$

- (3) State and prove Weierstrass Approximation theorem.
- (c) Discuss the uniform convergence of $f_n(x) = \frac{1}{1 + nx}$, $0 \le x \le 1$. 3

5. (a) Attempt any **three** :

- (1) State and prove sufficient conditions for existence of that derivative of a function w = f(z) at a point $z_0 = (x_0, y_0)$.
- (2) Find the image of the infinite strip $0 < y < \frac{1}{(2c)}$, $c \neq 0$ under the transformation $w = \frac{1}{z}$. Sketch the strip and its image.
- (3) Find the harmonic conjugate of sinh $x \sin y$ and corresponding analytic function in terms of z.
- (4) Verify conformality of $w = z^2$ by considering the curves y = 2x and y = x 1 and their images.
- (5) Find the image of the curve |z| = 2 under the mapping $w = z + \frac{1}{z}$, $z \neq 0$.
- (b) Find the non-conformal points of the transformation $w = 2z^3 21z^2 + 72z + 9$. **3**