Seat No. :

XB-125

T.Y.B.Sc.

March-2013

Mathematics : Paper - VIII

(Analysis - II)
Time : 3 Hours]
[Max. Marks : 105

1. (a) Attempt any three :
(1) Prove that monotonic decreasing bounded below sequence is convergent.
(2) Let $\left(S_{n}\right)$ be a bounded sequence of real numbers. If $\lim _{n \rightarrow \infty} \sup S_{n}=M$ then prove that for any $\in>0$.
(i) $S_{n}<M+E$ for all except a finite number of values of n.
(ii) $\mathrm{S}_{\mathrm{n}}>\mathrm{M}-\in$ for infinitely many values of n .
(3) If $\lim _{n \rightarrow \infty} t_{n}=M$ where $M \neq 0$, then prove that $\lim _{n \rightarrow \infty} \frac{1}{t_{n}}=\frac{1}{M}$
(4) If $\mathrm{S}_{1}=\sqrt{2}$ and $\mathrm{S}_{\mathrm{n}+1}=\sqrt{2} \sqrt{\mathrm{~S}_{\mathrm{n}}}$ for $\mathrm{n} \geq 1$, prove that $\left(\mathrm{S}_{\mathrm{n}}\right)$ is a monotonic increasing sequence bounded above and $\lim _{n \rightarrow \infty} S_{n}=2$.
(5) Prove that the sequence defined by the relation $S_{n+2}=\frac{1}{2}\left(S_{n+1}+S_{n}\right)$ converges provided that $S_{1} \neq S_{2}$.
(b) Find the $\lim _{n \rightarrow \infty} \sup _{n}$ and $\lim _{n \rightarrow \infty} \inf S_{n}$ for the sequence $S_{n}=(-1)^{n}\left(1+\left(\frac{1}{n}\right)\right)$.
2. (a) State and prove Weierstrass M-test.

OR

If $\sum a_{n}$ is a series of non-negative numbers which converges to $A \in R$ and $\sum b_{n}$ is rearrangement of $\sum \mathrm{a}_{\mathrm{n}}$, then prove that $\sum \mathrm{b}_{\mathrm{n}}$ is convergent and $\sum \mathrm{b}_{\mathrm{n}}=\mathrm{A}$.
(b) Attempt any two :
(1) Prove that $1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots$. converges.
(2) Prove that the series $\sum(-1)^{\mathrm{n}}\left[\sqrt{\mathrm{n}^{2}+1}-\mathrm{n}\right]$ is conditionally convergent.
(3) Discuss the uniform convergence of sequence of function $\mathrm{f}_{\mathrm{n}}(x)=\frac{\mathrm{n} x}{1+\mathrm{n}^{2} x^{2}}(-\infty<x<\infty)$.
(c) Discuss the convergence of $\sum_{n=2}^{\infty} \frac{1}{n \log n}$.
3. (a) Attempt any three :
(1) If $g \in R[a, b]$ then prove that $\frac{1}{g} \in R[a, b]$, where g is bounded away from zero.
(2) State and prove first fundamental theorem of calculus.
(3) Let g be continuous function on [a, b] and f has a derivative which is continuous and never changes sing on [a, b]. Then prove that for some

$$
\mathrm{C} \in[\mathrm{a}, \mathrm{~b}] \int^{\mathrm{b}} \mathrm{f}(x) \mathrm{g}(x) \mathrm{d} x=\mathrm{f}(\mathrm{a}) \int^{\mathrm{c}} \mathrm{~g}(x) \mathrm{d} x+\mathrm{f}(\mathrm{~b}) \int^{\mathrm{b}} \mathrm{~g}(x) \mathrm{d} x
$$

(4) If $f \in R[a, b]$ then prove that $|f| \in R[a, b]$. Also, prove that

$$
\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d} x\right| \leq \int_{\mathrm{a}}^{\mathrm{b}}|\mathrm{f}(x)| \mathrm{d} x
$$

(5) Prove that

$$
\frac{\pi^{3}}{24} \leq \int_{0}^{\pi} \frac{x^{2}}{5+3 \cos x} \mathrm{~d} x \leq \frac{\pi^{3}}{6}
$$

(b) Give an example of a function which is bounded on [a, b] but not Riemann integrable.
4. (a) Let f be a non-increasing function on $[1, \infty)$ such that $\mathrm{f}(x) \geq 0$ for $1 \leq x<\infty$. Then prove that $\sum_{n=1}^{\infty} f(n)$ converges if $\int_{1}^{\infty} f(x) d x$ converges and $\sum_{n=1}^{\infty} f(n)$ diverges if \int_{1}^{∞} $\mathrm{f}(x) \mathrm{d} x$ diverges.
(a) Test for convergence :
(1) $\int^{\infty} \frac{\mathrm{d} x}{1+x^{2}}$
(2) $\int_{0}^{\infty} \frac{1}{x^{3}+x^{1 / 3}} \mathrm{~d} x$
(b) Attempt any two :
(1) Let $\mathrm{f}(x)=\sum \mathrm{a}_{\mathrm{n}} x^{\mathrm{n}}$ be a power series with radius of convergence 1 . If the series converges at 1 , then prove that $\lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=\mathrm{f}(1)$.
(2) Prove that for $-1<x \leq 1$

$$
\frac{1}{2}\left(\tan ^{-1} x\right)^{2}=\frac{x^{2}}{2}-\frac{x^{4}}{4}\left(1+\frac{1}{3}\right)+\frac{x^{6}}{6}\left(1+\frac{1}{3}+\frac{1}{5}\right)+\ldots
$$

(3) State and prove Weierstrass Approximation theorem.
(c) Discuss the uniform convergence of $\mathrm{f}_{\mathrm{n}}(x)=\frac{1}{1+\mathrm{n} x}, 0 \leq x \leq 1$.
5. (a) Attempt any three :
(1) State and prove sufficient conditions for existence of that derivative of a function $\mathrm{w}=\mathrm{f}(\mathrm{z})$ at a point $\mathrm{z}_{0}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.
(2) Find the image of the infinite strip $0<y<\frac{1}{(2 c)}$, c $\neq 0$ under the transformation $\mathrm{w}=\frac{1}{\mathrm{Z}}$. Sketch the strip and its image.
(3) Find the harmonic conjugate of $\sinh x \sin y$ and corresponding analytic function in terms of z .
(4) Verify conformality of $\mathrm{w}=\mathrm{z}^{2}$ by considering the curves $\mathrm{y}=2 \mathrm{x}$ and $\mathrm{y}=x-1$ and their images.
(5) Find the image of the curve $|\mathrm{z}|=2$ under the mapping $\mathrm{w}=\mathrm{z}+\frac{1}{\mathrm{z}}, \mathrm{z} \neq 0$.
(b) Find the non-conformal points of the transformation $w=2 z^{3}-21 z^{2}+72 z+9$.

