\qquad

XX-134

April -2013
M.Sc. Sem.IV

507-PHYSICS

Nuclear Physics II \& Advanced Quantum Mechanics II

Time : 3 Hours]

[Max. Marks : 70

1. (a) Obtain the cross section for the formation of the compound nucleus by S-wave neutrons.

OR

What are called resonance in nuclear reactions ? Explain Briet-Wigner dispersion formula for $\mathrm{I}=0$.
(b) Discuss: Magnetic moments in the shell model predictions.

OR
Explain continuum theory of nuclear reactions.
2. (a) Show the classification of particles in terms of its spin and explain interaction forces between the particles in details.

OR
Discuss : Parity and Time reversal of elementary particles.
(b) Write the properties of elementary particles.
(i) Mass less BOSONS
(ii) LEPTONS

OR
Discuss in details about the K-Mesons with necessary properties and reactions.
3. (a) Derive the matrix elements of $\mathrm{J}_{+}=\mathrm{J}_{\mathrm{x}}+i \mathrm{~J}_{\mathrm{y}}$ and $\mathrm{J}-=\mathrm{J}_{\mathrm{x}}-i \mathrm{~J}_{\mathrm{y}}$ with respect to the basis in which J^{2} and J_{z} are diagonal. Show that every matrix representative of a component of J which satisfies $\mathrm{J} \times \mathrm{J}=\mathrm{i}$ ђ J has non zero trace.

OR

If $\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}$ and J_{z} are angular momentum operators, show that $\left[\mathrm{J}^{2}, \mathrm{~J} \pm\right]=0,\left[\mathrm{~J}_{+}, \mathrm{J}\right] 2 \dagger \mathrm{~J}_{\mathrm{z}}$ where, $\mathrm{J}_{+}=\mathrm{J}_{\mathrm{x}}+\mathrm{i} \mathrm{J}_{\mathrm{y}}$ and $\mathrm{J}-=\mathrm{J}_{\mathrm{x}}-\mathrm{iJy}$, interpret them as raising (lowering) operator and derive the result : $J_{ \pm}\left|j, \mathrm{~m}>=[j(j+1)-\mathrm{m}(\mathrm{m} \pm 1)]^{1 / 2} \hbar\right| j, \mathrm{~m} \pm 1 \mid>$
(b) Obtain Clebsch-Gordan coefficients for the addition of orbital and spin angular momentum for electron in p-state.

OR

Discuss the spin wave functions for a system of two spin $1 / 2$ particles. From this, explain the triplet and singlet states.
4. (a) Obtain Klein-Gordan equation for a charged particle moving in an electromagnetic field. Show that this equation reduces to the Schrödinger equation of motion for the particle in an electromagnetic field in the non-relativistic limit.

OR

Show that the Dirac matrices must be even dimensional. Calculate the charge density and current density for a free Dirac electron.
(b) Show that the Dirac's equation automatically endows the hypothetical spinning motion of the electron.

OR

Prove that a Dirac electron has a magnetic moment given by :

$$
\mu=\frac{e ђ \sigma^{\prime}}{2 m c}
$$

5. Write short answers :
(1) Do J^{2} and J_{z} have simultaneous eigen functions? If yes, write the form of functions.
(2) Write the values of commutations, $\left[\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}\right]$ and $\left[\mathrm{J}^{2}, \mathrm{~J}_{\mathrm{z}}\right]$.
(3) What do you mean by projection operator?
(4) What is the physical significance of negative energy states?
(5) Write Dirac's 4×4 matrices.
(6) What are the short comings of Klein-Gordon equation?
(7) For the Dirac matrices, show that $\alpha_{x}=\frac{1}{2}\left[\alpha_{x} \alpha_{y}, \alpha_{y}\right]$
(8) Which particles having integral spin?
(9) Write CPT theorem.
(10) Electrons have parity is \qquad . (odd/even)
(11) Define : Stripping reactions.
(12) What is the parity relation between particles and antiparticles?
(13) Define compound nucleus.
(14) Define : Pick-up reactions.
