

Seat No. : _____

XX-134

April -2013

M.Sc. Sem.IV

507-PHYSICS

Nuclear Physics II & Advanced Quantum Mechanics II

Time: 3 Hours]

1. (a) Obtain the cross section for the formation of the compound nucleus by S-wave neutrons. 7

OR

What are called resonance in nuclear reactions ? Explain Briet-Wigner dispersion formula for I = 0.

(b) Discuss : Magnetic moments in the shell model predictions.

7

7

[Max. Marks: 70

OR

Explain continuum theory of nuclear reactions.

(a) Show the classification of particles in terms of its spin and explain interaction forces between the particles in details.

OR

Discuss : Parity and Time reversal of elementary particles.

- (b) Write the properties of elementary particles.
 - (i) Mass less BOSONS
 - (ii) LEPTONS

OR

Discuss in details about the K-Mesons with necessary properties and reactions.

3. (a) Derive the matrix elements of $J_{+} = J_{x} + iJ_{y}$ and $J_{-} = J_{x} - iJ_{y}$ with respect to the basis in which J^{2} and J_{z} are diagonal. Show that every matrix representative of a component of J which satisfies $J \times J = i\hbar J$ has non zero trace. **7**

OR

If J_x , J_y and J_z are angular momentum operators, show that $[J^2, J\pm] = 0$, $[J_+, J_-] 2\hbar J_z$ where, $J_+ = J_x + iJ_y$ and $J_- = J_x - iJy$, interpret them as raising (lowering) operator and derive the result : $J_{\pm} | j, m > = [j (j + 1) - m(m \pm 1)]^{1/2} \hbar | j, m \pm 1 | >$ (b) Obtain Clebsch-Gordan coefficients for the addition of orbital and spin angular momentum for electron in *p*-state.

OR

Discuss the spin wave functions for a system of two spin $\frac{1}{2}$ particles. From this, explain the triplet and singlet states.

4. (a) Obtain Klein-Gordan equation for a charged particle moving in an electromagnetic field. Show that this equation reduces to the Schrödinger equation of motion for the particle in an electromagnetic field in the non-relativistic limit.
7

OR

Show that the Dirac matrices must be even dimensional. Calculate the charge density and current density for a free Dirac electron.

(b) Show that the Dirac's equation automatically endows the hypothetical spinning motion of the electron.7

OR

Prove that a Dirac electron has a magnetic moment given by :

$$\mu = \frac{e\hbar\sigma'}{2mc}$$

- 5. Write short answers :
 - (1) Do J^2 and J_z have simultaneous eigen functions ? If yes, write the form of functions.
 - (2) Write the values of commutations, $[J_x, J_y]$ and $[J^2, J_z]$.
 - (3) What do you mean by projection operator ?
 - (4) What is the physical significance of negative energy states ?
 - (5) Write Dirac's 4×4 matrices.
 - (6) What are the short comings of Klein-Gordon equation ?
 - (7) For the Dirac matrices, show that $\alpha_x = \frac{1}{2} [\alpha_x \alpha_y, \alpha_y]$
 - (8) Which particles having integral spin?
 - (9) Write CPT theorem.
 - (10) Electrons have parity is _____. (odd/even)
 - (11) Define : Stripping reactions.
 - (12) What is the parity relation between particles and antiparticles ?
 - (13) Define compound nucleus.
 - (14) Define : Pick-up reactions.

2

14