

| Seat No. : |  |
|------------|--|
|            |  |

## **XW-111**

## April-2013

## M.Sc. (Sem.II)

## 407: CHEMISTRY

(Inorganic Chemistry)

|      |                                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (morganic Chemistry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                 |  |
|------|------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|--|
| Time | Time: 3 Hours] [Max. Marks: 70                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                 |  |
|      |                                                      |                                              | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Character tables are to be provided. Figure to the right indicate marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                 |  |
| 1.   | (a)<br>(b)<br>(c)<br>(d)<br>(a)<br>(b)<br>(c)<br>(d) | Calc<br>Calc<br>Disc<br>Cons<br>Expl<br>Disc | ulate to ulate a ulate | the $\pi$ electron energy and delocalization energy of butad and comment on the stability of cyclopentadiene radical e PPP approximation.  OR  In the case of $AH_2$ molecule explain the Walsh diagram to the Bent rule taking the example of fluoromethanes. The energies involved in hybridization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iene.<br>and anion.                 | 4<br>3<br>4<br>4<br>4<br>3<br>3 |  |
| 2.   | <ul><li>(a)</li><li>(b)</li><li>(c)</li></ul>        | Which Write type How                         | ch hybe the molecy would                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a $AB_5$ molecule ( $C_4v$ ), with s, p and d orbitals available oridization scheme do you propose for $\sigma$ bonding? different steps involved in working out the molecular cule. Id you distinguish between two, $AB_4$ type of molecule groups, from their vibrational spectrum (IR and Raman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orbitals in $AB_n$ s, having Td and | 5<br>5                          |  |
|      | (a)                                                  | ·                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{OR}$ a tetrahedral $AB_4$ molecule with s, p and d orbitals available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 7                               |  |
|      | (b)                                                  | Inter $v_1 = v_2 = v_3 = v_4 = v_4$          | pret in<br>459 cm<br>315 cm<br>217 cm<br>762 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pridization scheme do you propose for $\pi$ bonding? In Raman spectrum of $\mathrm{CC}l_4$ . In $\mathrm{m}^{-1}$ (Pol) In $\mathrm{m}^{-1}$ (depol) In $\mathrm{m}$ |                                     | 5<br>5                          |  |
|      | (c)                                                  | 2A <sub>1</sub>                              | + B <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cule $[(M(CO)_4L_2], (C_2v)$ , the symmetries of stretchin + $B_2$ . Assign which will be IR active and which will be any coincidence?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Raman active.                     | 4                               |  |

| 3. | (a) | Explain the structure and bonding in cyclobutadiene.                                                                                         |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) | Explain why there is lot of scope and opportunities available for research in $\pi$                                                          |
|    |     | bonded organometallic chemistry.                                                                                                             |
|    | (c) | Comment on the stability of M—C bond in organometallic compounds.  OR                                                                        |
|    | (a) | Explain the structure and bonding in ferrocene.                                                                                              |
|    | (b) | Write a short note on organometallic reagents used in different organic catalytic reactions.                                                 |
|    | (c) | Differentiate between $\sigma$ bonded and $\pi$ bonded organometallic compounds.                                                             |
| 4. | (a) | Explain the mechanism of substitution reaction in square planar complexes of Pt(II) ion.                                                     |
|    | (b) | Give an account of outer sphere mechanism.                                                                                                   |
|    | (c) | Discuss the following kinetics data of substitution reaction of Platinum(II) complexes. (i) Effect of leaving group, (ii) Charge effect.  OR |
|    | (a) | Give an account on Tunneling effect.                                                                                                         |
|    | (b) | Explain the unstable oxidation state with suitable examples.                                                                                 |
|    | (c) | Discuss the effect of solvent and trans effect on the rate of reaction of Pt (II) complexes.                                                 |
| 5. | Ans | wer the following: (1 mark each)                                                                                                             |
|    | (a) |                                                                                                                                              |
|    | (b) | LCAO stands for  The bond angle of NF <sub>3</sub> is less than that of NH <sub>3</sub> , give reason.                                       |
|    | (c) | BeF <sub>2</sub> is a linear molecule. True or False.                                                                                        |
|    | (d) | The total electron density $q_i =$                                                                                                           |
|    | (e) | What do you understand about the symmetry of a transition when it is polarized in Raman spectrum.                                            |
|    | (f) | If two fundamental bands are found at $v_i$ and $v_j$ then a binary combination will be                                                      |
|    |     | found at                                                                                                                                     |
|    | (g) | Name the d orbital used in $\sigma$ bonding in AB <sub>5</sub> (D <sub>3</sub> h).                                                           |
|    | (h) | In a molecule $[M(CO_4)L_2]$ , $(D_4h)$ , the symmetries of stretching vibrations are $A_{lg}$ +                                             |
|    |     | $B_{lg}$ + Eu. How many IR active bands are there ?                                                                                          |
|    | (i) | Write the formula of catalyst used in hydrogenation reaction.                                                                                |
|    | (j) | Are all coordination compounds are organometallic compounds? Yes/No.                                                                         |
|    | (k) | When five carbon atoms are within the bonding distance of one metal atom they are called type of complexes.                                  |
|    | (1) | The rate of replacement of X from a metal complex show a decreasing rate in the order                                                        |
|    | (m) | Good trans activators are strongly bonded to metal. True or False?                                                                           |
|    | (n) | The ligand atom sulphur is better nucleophile than towards Pt(II).                                                                           |

XW-111 2