Seat No. :

XA-130

T.Y.B.Sc.

March-2013

Mathematics : Paper - VII (Real Analysis - I)
 (New Course)

Time: 3 Hours]
[Max. Marks : 105

Instructions : (1) All questions are compulsory.
(2) In each question, C Part is of short and is compulsory.
(3) Symbols used have their usual meaning.
(4) Each question is of 21 marks.

1. (a) Define characteristic function of $\mathrm{A} \subset \mathrm{X}$. If $\mathrm{A}, \mathrm{B} \subset \mathrm{X}$ then prove that
(i) $\mathrm{X}_{\mathrm{A}}(x) \leq \mathrm{X}_{\mathrm{B}}(x) \Leftrightarrow \mathrm{A} \subset \mathrm{B}$.
(ii) $\mathrm{X}_{\mathrm{A} \cup \mathrm{B}}(x)=\mathrm{X}_{\mathrm{A}}(x)+\mathrm{X}_{\mathrm{B}}(x)-\mathrm{X}_{\mathrm{A} \cap \mathrm{B}}(x)$

OR

If A and B are the two non-empty subsets of R which has a least upper bound. If $\mathrm{C}=\{\mathrm{a}+\mathrm{b} / \mathrm{A} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}\}$ then prove that C has the least upper bound and lub $C=$ lubA + lubB.
(b) Prove that $[0,1]$ is uncountable.

OR

If A is the set of all sequences whose elements are the digits 0 and 1 then prove that A is uncountable.
(c) (i) Let X be any subset of R. If $\mu=\operatorname{lubX}$ then prove that every $\varepsilon>0 \exists x \in X \in \mu$ $-\varepsilon<x \leq \mu$.
(ii) If $x, \mathrm{y}, \in \mathrm{R}, x<\mathrm{y}$ then prove that $\exists \mathrm{r} \in \phi \exists \mathrm{x}<\mathrm{r}<\mathrm{y}$.
2. (a) Prove that $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)=\mathrm{L} \Leftrightarrow \mathrm{f}\left(x_{\mathrm{n}}\right) \rightarrow \mathrm{L}$ for every sequence $\left(x_{\mathrm{n}}\right)$ in the domain of f with $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{a}(\mathrm{n}=1,2,3, \ldots)$

OR

Let f and g be continuous real valued functions. If f is continuous at a and g is continuous at $f(a)$ then prove that gof is continuous at a.
(b) State and prove a fixed point theorem

OR

If f is monotonic on (a, b) then prove that for each $\mathrm{C} \in(\mathrm{a}, \mathrm{b}), \lim _{x \rightarrow \mathrm{c}_{+}} \mathrm{f}(x)$ and $\lim _{x \rightarrow \mathrm{C}_{-}} \mathrm{f}(x)$ both exist.
(c) (i) Discuss different kinds of discontinuity of a real valued function f on R.
(ii) If f is continuous at $x=$ a then prove that $|\mathrm{f}|$ is continuous at $x=\mathrm{a}$.
3. (a) Define an open sphere in a metric space ($x, \mathrm{~d}$). Prove that every open sphere in $(x, \mathrm{~d})$ is an open set.

OR

Define : A metric space. Prove that $\left(\mathrm{R}^{2}, \mathrm{~d}\right)$ is a metric space where $\mathrm{d}(x, y)=\sqrt{\left(x_{1}-\mathrm{y}_{1}\right)^{2}+\left(x_{2}-\mathrm{y}_{2}\right)^{2}}$, where $x=\left(x_{1}, x_{2}\right) \in \mathrm{R}^{2}, \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in \mathrm{R}^{2}$.
(b) In any metric space ($x, \mathrm{~d}$). Prove that the intersection of a finite number of open sets is open. Is it true for an infinite intersection? Justify your answer.

OR

Define : A closed set in a metric space (x, d). Prove that a subset F of a metric space x is closed \Leftrightarrow its complement F^{\prime} is open.
(c) (i) Define : Homomorphism. If $\mathrm{f}: \mathrm{X}_{1} \rightarrow \mathrm{X}_{2}$ is homomorphism then prove that f^{-1} is also homomorphism on X_{2}.
(ii) Which of the following set in R are open or closed or not open and not closed ?
(a) Q
(b) $\{1,2,3\}$
(c) $(0,1]$
(d) $[\mathrm{a}, \mathrm{b}]$
4. (a) Define compact metric space. Prove that the metric space ($x, \mathrm{~d}$) is compact \Leftrightarrow every sequence of points in x has a subsequence converging to a point in x.

OR

Let ($x, \mathrm{~d}$) be a complete metric space. If T is a contraction in x then prove that $\mathrm{T}_{\mathrm{x}}=x$ has a unique solution for x.
(b) If the subset A of the metric space $(x, \mathrm{~d})$ is totally bounded then prove that A is bounded.

OR

Prove that a metric space ($x, \mathrm{~d}$) is disconnected $\Leftrightarrow X$ is the union of two non-empty disjoint open sets.
(c) (i) Prove that every finite subset E of any metric space (X, d) is compact.
(ii) If $\mathrm{t}: \mathrm{X} \rightarrow \mathrm{X}$ is defined by $\mathrm{T}_{x}=x$, where $\mathrm{X}=\left[0, \frac{1}{3}\right]$ then prove that T is a contraction on $\left[0, \frac{1}{3}\right]$.
5. (a) State and prove the inverse function theorem.

OR

State and prove Cauchy's mean value theorem and hence deduce Lagrange's Mean value theorem.
(b) State and prove Taylor's theorem.

OR

Define : Derivative of function at a point. If f is a differentiable function at a point $a \in I$, ICR then prove that f is continuous at a.
(c) (i) Prove that between any two real roots of equation $\mathrm{e}^{x} \cdot \sin x=1$, there is at least one real root of $\mathrm{e}^{x} \cdot \cos x+1=0$.
(ii) Evaluate : $\lim _{x \rightarrow 1} \frac{x^{x}-x}{x-1-\log x}$

