Seat No. : $\qquad$

## XU-129

April-2013

## Five Year M.Sc. (CA \& IT) Integrated (K.S.)

F.Y. M.Sc. (Sem.-II)

Matrix Algebra \& Graph Theory

## Time : 3 Hours]

[Max. Marks : 100

1. Answer the following:
(1) Difference between Bridge and Cut vertex.
(2) Explain Jordan curve with example.
(3) K5 the complete graph is planner or not identify.
(4) Find number of edges of a 4 Regular graph with 6 vertices.
(5) Define following graph G for Euler's formula.

(6) Draw a graph represented by the given adjacency matrix.

$$
\left[\begin{array}{llll}
0 & 3 & 0 & 2 \\
3 & 0 & 1 & 1 \\
0 & 1 & 1 & 2 \\
2 & 1 & 2 & 0
\end{array}\right]
$$

(7) Find square of the Graph.

(8) What is sub space ?
(9) Explain Diagonal matrix.

[^0]Find cofactor $\mathrm{C}_{23}$.
2. (a) Attempt any three :
(1) What is isomorphic ? Verify if the given graphs are isomorphic or not?

(2) State Konigsberg Bridge problem.
(3) Find closure of graph.

(4) Let $G$ be an a cyclic graph with $n$ vertices and $k$ connected components then show G has n -k edges.
(b) Attempt any one :
(1) Apply Dijkaspa's Algorithm for finding the shortest path from 's' to ' $t$ '.

(2) What are the main difference between Prim's Algorithm and Krushkal's Algorithm ? Find the minimal spanning tree using Prim's Algorithm and Krushkal's Algorithm of the following graph :

3. (a) Answer the following:
(1) How many edges does a null binary tree with 1000 internal vertices have ? 2
(2) How many leaves does a null 3-ary tree with 100 vertices have? 2
(3) Explain Binary tree with example. 2
(4) Prove that: 4

An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.
(b) Attempt any two :
(1) Find the value of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ from the following matrix :

$$
\left[\begin{array}{ccc}
a+1 & b+2 & 3+z \\
-5 & c-7 & x \\
x+6 & y+4 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 a+5 & 7 & 2 z-5 \\
-5 & 0 & 0 \\
6 & 5 & 1
\end{array}\right]
$$

(2) If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$ then prove that

$$
(\mathrm{A} \cdot \mathrm{~B})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \cdot \mathrm{~A}^{\mathrm{T}}
$$

(3) Find solution of given system by matrix inverse method $\left[\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}\right]$

$$
\begin{aligned}
& 2 x_{1}-x_{2}+2 x_{3}=2 \\
& x_{1}+10 x_{2}-3 x_{3}=5 \\
& x_{1}-x_{2}-x_{3}=3
\end{aligned}
$$

4. Answer the following :
(1) For a given matrix $A$ find $A^{2}, A^{-1}, A^{-2}$ using Caley Hamilton theorem.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

(2) Find eigen value eigen vector of the following matrix :

$$
A=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

(3) Using Gauss Jordan method find value of $x, y, z$

$$
\begin{array}{r}
x-2 y+3 z=4 \\
2 x-y+3 z=5 \\
-x-y+2 z=3
\end{array}
$$

## OR

Using Gauss Elimination method find value of $x, y, z$
$x-2 y+3 z=4$
$2 x-y+3 z=5$
$-x-y+2 z=3$
(4) Define Rank of a matrix. Find the Rank of the matrix.
$A=\left[\begin{array}{ccc}3 & -1 & -2 \\ -6 & 2 & 4 \\ -3 & 1 & 2\end{array}\right]$
5. (a) Attempt any five :
(1) Prove that the 3 vector are linearly dependent or not
$x_{1}=(1,1,1), x_{2}=(1,1,0), x_{3}=(1,0,1)$
(2) Find the matrix for the linear transformation $T: R^{3} \rightarrow R^{2}$ is defined by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+2 \mathrm{y}, 3 \mathrm{x}-\mathrm{y})$
Standard basic

$$
F_{1}=(1,0,1), F_{2}=(0,1,1), F_{3}=(1,1,0)
$$

(3) Answer the following:
(a) Given $u=(3,4)$ find the length of the vector.
(b) Prove that $(-1) \cdot \mathrm{u}=(-\mathrm{u})$
(c) Given $u=(3,2)$ and $v=(4,5)$ find u.v.
(4) Expand the following term using Binomial theorem :
$(69)^{5}$
(5) Find the probability that in random arrangement of the letters of the word 'ASSASSINATION'.
(6) Explain Pigeonhole Principle.
(b) Answer the following :
(1) In a class of 15 student 10 are boys and 5 are girls 2 students are selected at random from the class :
(i) find the probability that there is at least one girl in the selection of two students.
(ii) find the probability that there is a boy and girl given condition that there is at least one girl in the selection of two students.


[^0]:    $A=\left[\begin{array}{ccc}1 & 4 & 3 \\ -1 & 9 & 11 \\ 3 & 0 & 5\end{array}\right]$

