\qquad

XS-117

April-2013

B.B.A. (Sem.-II)

CC-112 : (Business Mathematics)

Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) All questions carry equal marks.
(2) Simple calculator is allowed.

1. (a) Define differentiation using definition. Give illustration.

OR

(a) Define the following terms :
(i) Elasticity of Demand
(ii) Marginal Revenue Function
(b) Find the derivates of the following functions with respect to x :
(i) $\mathrm{y}=\log \left[\mathrm{e}^{x}(8 x+1)^{2}\right]$
(ii) $\mathrm{y}=\frac{x^{3}}{\log x+7}$

OR

(b) Find the derivates of the following functions with respect to x :
(i) $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
(ii) $x y+x+y=5$
(c) (i) If the demand function of a commodity is $\mathrm{p}=40-3 x$, find marginal Revenue and Average Revenue.
(ii) If $x^{y}=\mathrm{e}^{x-y}$, prove that

$$
\frac{\mathrm{dy}}{\mathrm{~d} x}=\frac{\log x}{(1+\log x)^{2}}
$$

OR

(c) (i) The demand function of a commodity is $x=4(9-\sqrt{\mathrm{p}})$, find the elasticity of demand when $p=4$.
(ii) If $\mathrm{y}=\mathrm{x} \log \mathrm{y}$, then prove that

$$
\frac{\mathrm{dy}}{\mathrm{~d} x}=\frac{\mathrm{y}^{2}}{x(\mathrm{y}-\mathrm{x})}
$$

2. (a) Define the following terms:
(i) Utility
(ii) Partial Derivative

OR

(a) Find the second order partial derivatives of $u=4 x^{2}+9 x y-5 y^{2}$ prove that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$
(b) A monopolist firm manufacturing pressure cookers at a cost of ₹ $\left(\frac{x^{2}}{30}+3 x+50\right)$. The demand function for pressure cookers is $x=75-3$ p. How many cookers should be manufactured by the firm to get maximum profit ? Also find the maximum profit and the corresponding price.

OR

(b) The utility function is $u=48-(x-5)^{2}-3(y-4)^{2}$ and the budget equation is $x+3 y=9$. Find the values of x and y so that the consumer gets maximum utility.
(c) If $u=\log \left(x^{2}+y^{2}+z^{2}\right)$, prove that
$x \frac{\partial^{2} u}{\partial y \partial z}=y \frac{\partial^{2} u}{\partial z \partial x}=z \frac{\partial^{2} u}{\partial x \partial y}$

OR

(c) If $\mathrm{y}=\frac{1-\log x}{x}$ prove that
$x^{3} \frac{\mathrm{~d}^{2} y}{d x^{2}}+2 x^{2} \frac{\mathrm{dy}}{\mathrm{d} x}-1=0$
3. (a) Define the following terms :
(i) Identify Matrix
(ii) Row Matrix
(iii) Skew-symmetric Matrix
(iv) Null Matrix

OR

(a) Write the difference between matrix and determinant.
(b) If $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & 1 & -1\end{array}\right]$, then prove that
$A^{3}+4 A^{2}-A=12 I$

OR

(b) (i) If $A^{2}=\left[\begin{array}{ll}13 & 12 \\ 12 & 13\end{array}\right]$ then find matrix A.
(ii) If $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], E=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then prove that $(a I+b E)^{3}=a^{3} I+3 a^{2} b E$
(c) Solve the following equation by using matrix inversion method :
$\frac{3}{x}-\frac{4}{y}-\frac{2}{z}=1$
$\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=2$
$\frac{2}{x}+\frac{5}{y}-\frac{2}{z}=3$

OR

(c) (i) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right], B\left[\begin{array}{ll}2 & 5 \\ 1 & 4\end{array}\right]$, verify that $\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$
(ii) Solve the following equation by matrix method :
$3 x+5 y=2 x y$
$7 x+11 y=4 x y$
4. (a) Define the following terms :
(i) Nominal Interest Rate
(ii) Sinking Fund

OR

(a) ₹ 4,000 are invested for one year at 8% compound rate of interest and the interest is calculated quarterly, what is the effective rate of interest.
(b) Initial cost of appliance is ₹ 64,000 . The rate of depreciation for the first two years is 5%, then it comes to 8% for the next two years and it becomes 10% for the fifth year. Find the depreciated value of appliance after five years.
(b) Dhairya has opened a recurring account for a period of 10 years. He deposits ₹ 2,500 in this account in the beginning of every year. If the rate of interest is 11% find out the total amount in his account at the end of 10 years. $\left[(1.11)^{10}=2.8394\right]$
(c) Soniya has attained a loan to start an ISP unit. This loan is to be repaid in 10 installments of ₹ $1,75,000$ each at the end of year. If the rate of compound interest is 12%, find the amount of the loan. [$\left.(1.12)^{10}=3.1058\right]$.

OR

(c) Nandini borrows ₹ 32,000 at rate 16% of simple interest and invests it on the same day at the rate 14% of compound interest. At the end of 4 years how much profit or loss will she have ?
5. Do as Directed :
(i) Define minor of a matrix.
(ii) If $\mathrm{A}: \mathrm{n} \times \mathrm{K}, \mathrm{B}: \mathrm{k}: \mathrm{m}$, write order of matrix AB .
(iii) Give formula for obtaining ordinary annuity.
(iv) If the demand function of a commodity is $\mathrm{p}=40-3 x$, find marginal revenue.
(v) If $\mathrm{f}(x)=x^{4}-4 x^{3}+3 x^{2}+x+1$, find $\mathrm{f}^{\prime \prime}(0)$.
(vi) In a skew-symmetirc matrix, all the diagonal elements are always \qquad .
(vii) Define Compound Interest.
(viii) Define Sinking Fund.
(ix) Give division rule of differentiation.
(x) If $y=2 x^{2}+9 x-32$, find $\frac{\mathrm{dy}}{\mathrm{d} x}$.
(xi) What are the conditions for obtaining minimum value?
(xii) Give necessary conditions for adding two matrices.
(xiii) If $A=\left[\begin{array}{cc}2 & 0 \\ 1 & -2\end{array}\right]$ find (A')'.
(xiv) Write a matrix with order 3×4.

