Seat No. : _____

XR-117

April-2013

B.C.A (Sem. – II)

CC : 111 (Mathematical Foundation of Computer Science)

Time: 3 Hours]

[Max. Marks: 70

Instruction : Use of simple calculator is allowed.

1. (a) If (G, *) is a group and if a, b, c are elements of G, then prove that :

(i) $a * b = a * c \Rightarrow b = c$ (left cancellation law)

(ii) $b * a = c * a \Rightarrow b = c$ (right cancellation law)

OR

Let G be the set of all non-zero real numbers and let

$$a * b = \frac{1}{2}ab$$

Prove that (G, *) is an Abelian group.

(b) Prove that every cyclic group is an Abelian.

OR

Let G = {a, a^2 , a^3 , a^4 , a^5 , $a^6 = e$ } be a multiplicative group. Find order of every element.

2. (a) Let $A = \{a, b, c, d\}$ and

 $R = \{(a, b), (a, a), (b, a), (b, b), (c, c), (d, d), (d, e), (e, d), (e, e)\} and$ S = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, d), (d, e), (e, d)} be the equivalence relations on A. Determine the partitions corresponding to R \cap S.

OR

Let $D_{100} = \{1, 2, 4, 5, 10, 20, 25, 50, 100\}$ whose all elements are divisors of 100. Let the relation " \leq " be the relation "/" (divides) be a partial ordering on D_{100} . Determine the GLB and LUB of B, where $B = \{5, 10, 20, 25\}$.

(b) Draw the Hasse Diagram of (S_{64}, D) .

OR

Let $A = \{a, b, c, d\}$ and consider the relation $R = \{(a, b), (a, b), (a, c), (a, d), (b, b), (b, d), (c, c), (c, d), (d, d)\}$ Show that R is a partial ordering.

XR-117

7

7

7

7

3. (a) Find the product of sum expansion of the Boolean function.

 $\mathbf{f}(x, \mathbf{y}, \mathbf{z}) = (x + \mathbf{z}) \cdot \mathbf{y}$

OR

Define the following :

- (i) Boolean Algebra
- (ii) Direct Product of two lattice
- (iii) Atoms
- (iv) Complemented lattice
- (v) Join Irreducible
- (vi) Bounded Lattice
- (vii) Chain

(b) Let $(L, *, \oplus)$ be a lattice. If a, b, $c \in L$ prove that (a * b) * c = a * (b * c). 7

OR

Define Sub-lattice. Find all the sub-lattice of the lattice (S_{12}, D) . Is (S_{12}, D) a complemented lattice ?

4. (a) Find radius and diameter of the following graph :

Give three types of representation of the following tree :

(A(B(E((H) (I) (J))) (C) (D(F(K))(G)))

(b) Define Path, Simple Path and Elementary Path. Determine all elementary paths from V_1 to V_5 in the following graph : 7

7

7

(b) Define Isomorphic Graphs.Determine the following graphs are isomorphic or not ?

- 5. Attempt any **fourteen** :
 - (1) If '*' is a binary operation on any set S, then a * a = a. (true/false)
 - (2) Let S be a set having exactly 3 elements. How many different binary operations can be defined on S ?

(a)	3 ²	(b)	2 ³
(c)	3 ³²	(d)	3 ^{2³}

- (3) Which of the following does not hold associative law for binary operations ?
 - (a) (N, *), where x * y = 9cd (x, y) for all x, $y \in N$
 - (b) (N, *), where x * y = 1 cm (x, y) for all x, $y \in N$
 - (c) (R, *), where x * y = |x| + |y| for all $x, y \in \mathbb{R}$
 - (d) (N, *), where $x * y = x^y$ for all $x, y \in N$
- (4) A group is a special type of _____.
 - (a) Monoid (b) Groupoid
 - (c) Abelian (d) None of these
- (5) Let $A = \{1, 2, 3\}$. Give an example of a relation on set A which is neither symmetric nor antisymmetric.
- (6) If 'xRy' stands for "x is a child of y", then state whether the relation is reflective, symmetric, antisymmetric or transitive ?
- (7) Let $S = \{1, 2, 3, 5, 6, 10, 15\}$ is ordered by divisibility. Out of the following which pair of elements of S are non-comparable ?
 - (a) (1,2) (b) (2,6)
 - (c) (2, 3) (d) None of these

3

14

- (8) Let S = {1, 2, 3, 4,.....} is ordered by divisibility, then investigate which of the following subset of S is not linearly ordered ?
 - (a) (2, 4, 8) (b) (3, 6, 9, 11)
 - (c) (1) (d) None of these
- (9) Find complement of the following Boolean expressions by De-Morgan's law.
 & (A, B, C) = (A' + B' C)'
- (10) Atoms are immediate ______ of lowest element 'O'. (predecessors/successors)
- (11) Every chain is a lattice. (true/false)
- (12) In a lattice if $a \le b \Leftrightarrow a \oplus b =$ _____ (a) a (b) b
- (13) A vertex of degree zero is called _____ vertex. (isolated/pendent)
- (14) Draw a graph with six vertices and four edges.
- (15) Define Loop in a graph theory.
- (16) The graph K_7 has _____ number of edges.
 - (a) 21 (b) 25
 - (c) 28 (d) none of these