Seat No. : \qquad

TN-112

B.C.A. Sem. III

May-2013

CC-202 : Data Structures

(2) Difference between Singly Linked List and Doubly Linked List. 3
OR
(1) What is linked list ? Write down advantages and disadvantages of linked list. 4
(2) Write an algorithm to delete an element from beginning from Doubly Linked List. 3
(B) (1) Write an algorithm for Bubble sort. 4
(2) Write an algorithm for Linear Search. 3
OR
(1) Write an algorithm for Binary Search. 4
(2) Sort the following data using Selection sort : 3
7538526969940
2. (A) (1) Convert the following infix expression into postfix expression using stack : 5
$\mathrm{A}-(\mathrm{B} / \mathrm{C}+(\mathrm{D} \% \mathrm{E} * \mathrm{~F}) / \mathrm{G}) * \mathrm{H}$
(2) Write an algorithm for PUSH operation. 2
OR
(1) Convert the following infix expression into prefix form by using manual method. 5
$(\mathrm{A}-\mathrm{B}) *(\mathrm{E}+\mathrm{G}) /(\mathrm{C}+\mathrm{D}) \wedge(\mathrm{F}-\mathrm{H})$
(2) Write an algorithm for PEEP operation. 2
(B) (1) Write an algorithm for insert and deletion operation in a simple queue. 4
(2) Trace the simple queue of the following operations. If front $=1$ and rear $=3$ and size of queue is 5 3
(i) ENQUEUE(P) (ii) ENQUEUE(Q) (iii) DEQUEUE
(iv) ENQUEUE(R) (v) DEQUEUE (vi) ENQUEUE(S)
OR
(1) Explain types of a queue. 4
(2) What is the problem of simple queue ? How it can be overcome? 3
3. (A) (1) Explain AVL tree. 4
(2) Define the following : 3
(i) Tree
(ii) Leaf node
(iii) Complete binary tree
(1) Create the Max heap from the following data.
$\begin{array}{llllllll}45 & 36 & 54 & 27 & 63 & 72 & 61 & 18\end{array}$
(2) Write down algorithm for in-order traversal and pre-order traversal.
(B) (1) Write an algorithm for insertion in Binary Search Tree. 4
(2) Create an expression tree from the following expression.
$((\mathrm{A}+\mathrm{B})-(\mathrm{C} * \mathrm{D})) \%((\mathrm{E} \wedge \mathrm{F}) /(\mathrm{G}-\mathrm{H}))$
OR
(1) Create binary tree from the following traversal :

In-order : 9, 18, 27, 39, 45, 54, 63, 72, 90, 99.
Pre-order : 72, 54, 39, 9, 27, 18, 45, 63, 90, 99.
(2) Create the binary search tree from the following data :

58, 25, 60, 59, 20, 38, 40, 1, 90.
4. (A) (1) Define the following :
(i) Degree
(ii) Isolated vertex
(iii) Multiple edge
(iv) Disconnected Graph
(2) From the given graph, shows its adjacency matrix representation.

OR
(1) From the given graph, show its DFS and DFS traversal.

(2) Write down the Prim's algorithm.
(B) (1) Construct a graph from the following adjacency matrix. And also show the Adjacency List from the same graph.

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}	0	1	0	1	1
\mathbf{B}	1	0	1	1	0
\mathbf{C}	0	1	0	1	1
\mathbf{D}	1	1	1	0	1
\mathbf{E}	1	0	1	1	0

(2) Define spanning tree. What is the use of minimum spanning tree ?
(1) Draw the minimum cost spanning tree from the following weighted graph using Kruskal's algorithm. And find the cost of that spanning tree.

(2) Define the following :
(i) Out-degree of a vertex
(ii) Path
(iii) Complete graph
5. Attempt any Fourteen :
(1) Define Similar Binary Tree.
(2) In a queue, insertion is done at \qquad .
(a) Rear
(b) Front
(c) Back
(d) Top
(3) Degree of a leaf node is \qquad .
(a) 0
(b) 1
(c) 2
(d) 4
(4) New nodes are added at \qquad of the queue.
(5) Total number of the edges connecting to the node are called \qquad .
(a) In-degree
(b) Out-degree
(c) Degree
(d) None of these
(6) Graph is a linear data structure. (T/F)
(7) Which type of linked list contains a pointer to the next as well as previous node in the sequence ?
(a) Singly linked list
(b) Circular linked list
(c) Doubly linked list
(d) All of these
(8) Element in a priority queue are processed randomly. (T/F)
(9) Stack is \qquad .
(a) LIFO
(b) FIFO
(c) FILO
(d) LILO
(10) Total number of nodes in the $n^{\text {th }}$ level of a binary tree can be given as
(a) 2 h
(b) 2^{h}
(c) $2^{\mathrm{h}+1}$
(d) $2^{\mathrm{h}-1}$
(11) A graph G can have many different spanning trees. (T/F)
(12) In which sorting, consecutive adjacent pairs of elements in the array are compared with each other?
(a) Bubble sort
(b) Selection sort
(c) Merge sort
(d) Radix sort
(13) A path P is known as a \qquad path if the edge has the same end points.
(14) A linked list can store only integer values. (T/F)
(15) Define Isolated Node.

