Seat No. : _____

TN-112 B.C.A. Sem. III

May-2013

CC-202 : Data Structures

Time: 3 Hours]

[Max. Marks : 70

1.	(A)	(1)	What is Data structure ? Explain different types of data structure.	4
		(2)	Difference between Singly Linked List and Doubly Linked List.	3
			OR	
		(1)	What is linked list ? Write down advantages and disadvantages of linked list.	4
		(2)	Write an algorithm to delete an element from beginning from Doubly Linked	2
		(1)	List.	5
	(B)	(1)	Write an algorithm for Bubble sort.	4
		(2)	OR	3
		(1)	Write an algorithm for Binary Search.	4
		(2)	Sort the following data using Selection sort :	3
			75 3 85 26 96 99 40	
2.	(A)	(1)	Convert the following infix expression into postfix expression using stack :	5
			A - $(B/C + (D \% E * F)/G) * H$	
		(2)	Write an algorithm for PUSH operation.	2
			OR	
		(1)	Convert the following infix expression into prefix form by using manual	
			method.	5
			$(A - B) * (E + G) / (C + D) ^ (F - H)$	
	(-)	(2)	Write an algorithm for PEEP operation.	2
	(B)	(1)	Write an algorithm for insert and deletion operation in a simple queue.	4
		(2)	Trace the simple queue of the following operations. If front = 1 and rear = 3 and size of gueue is 5	2
			(i) ENOLUEUE(D) (ii) ENOLUEUE(O) (iii) DEOLUEUE	3
			(i) ENQUEUE(P) (ii) ENQUEUE(Q) (iii) DEQUEUE (iv) ENQUEUE(R) (v) DEQUEUE (vi) ENQUEUE(S)	
		(1)	Explain types of a queue.	4
		(1) (2)	What is the problem of simple queue ? How it can be overcome ?	3
		(-)		-
3.	(A)	(1)	Explain AVL tree.	4
		(2)	Define the following :	3
			(i) Tree	
			(ii) Leaf node	
			(iii) Complete binary tree	
			OR	
TN-	112		1 P.T.0	0.

	(1)	Create the Max heap from the following data.				
		45 36 54 27 63 72 61 18				
	(2)	Write down algorithm for in-order traversal and pre-order traversal.	3			
(B)	(1)	Write an algorithm for insertion in Binary Search Tree.	4			
	(2)	Create an expression tree from the following expression.	3			
		$((A + B) - (C * D)) \% ((E ^ F) / (G-H))$				
		OR				
	(1)	Create binary tree from the following traversal :	4			
		In-order : 9, 18, 27, 39, 45, 54, 63, 72, 90, 99.				
		Pre-order : 72, 54, 39, 9, 27, 18, 45, 63, 90, 99.				
	(2)	Create the binary search tree from the following data :				
		58, 25, 60, 59, 20, 38, 40, 1, 90.				
(A)	(1)	Define the following :	4			
		(i) Degree				
		(ii) Isolated vertex				
		(iii) Multiple edge				
		(iv) Disconnected Graph				
	(2)	From the given graph, shows its adjacency matrix representation.	3			

(1) From the given graph, show its DFS and DFS traversal.

(2) Write down the Prim's algorithm.

4.

4

(B) (1) Construct a graph from the following adjacency matrix. And also show the Adjacency List from the same graph.

	Α	В	С	D	Ε
Α	0	1	0	1	1
В	1	0	1	1	0
С	0	1	0	1	1
D	1	1	1	0	1
Е	1	0	1	1	0

(2) Define spanning tree. What is the use of minimum spanning tree ?

OR

 Draw the minimum cost spanning tree from the following weighted graph using Kruskal's algorithm. And find the cost of that spanning tree.

(2) Define the following :

- (i) Out-degree of a vertex
- (ii) Path
- (iii) Complete graph
- 5. Attempt any Fourteen :
 - (1) Define Similar Binary Tree.
 - (2) In a queue, insertion is done at _____.
 - (a) Rear (b) Front
 - (c) Back (d) Top
 - (3) Degree of a leaf node is _____.
 - (a) 0 (b) 1
 - (c) 2 (d) 4
 - (4) New nodes are added at _____ of the queue.

(5) Total number of the edges connecting to the node are called _____.

3

- (a) In-degree (b) Out-degree
- (c) Degree (d) None of these

TN-112

3

3

14

- (6) Graph is a linear data structure. (T/F)
- (7) Which type of linked list contains a pointer to the next as well as previous node in the sequence ?
 - (a) Singly linked list (b) Circular linked list
 - (c) Doubly linked list (d) All of these
- (8) Element in a priority queue are processed randomly. (T/F)
- (9) Stack is _____.
 - (a) LIFO (b) FIFO
 - (c) FILO (d) LILO
- (10) Total number of nodes in the nth level of a binary tree can be given as
 - (a) 2h (b) 2^{h}
 - (c) 2^{h+1} (d) 2^{h-1}
- (11) A graph G can have many different spanning trees. (T/F)
- (12) In which sorting, consecutive adjacent pairs of elements in the array are compared with each other ?
 - (a) Bubble sort (b) Selection sort
 - (c) Merge sort (d) Radix sort
- (13) A path P is known as a _____ path if the edge has the same end points.
- (14) A linked list can store only integer values. (T/F)
- (15) Define Isolated Node.