Seat No.:	
-----------	--

7

7

10

10

AF-139

April-2015

4th Year MBA (Integrated)

Production and Operations Management

Time: 3 Hours] [Max. Marks: 100

- 1. (a) Mercedes-Benz is one the leading company in automobile industry. Mention process strategies that can be followed in auto industry.
 - (b) Explain production system in detail.

(c) Machine X and Y can manufacture a product with following information:

Description	Machine -X	Machine -Y
Investment	100000	160000
Interest on capital	10%	10%
Hourly charges	₹ 20	₹ 16
No of pieces produced per hour.	10	16
Annual operating hours	4000	4000

Calculate:

- (1) Which machine will have lower cost per unit?
- (2) If only 8000 pieces are to be produced a year, which machine is better?
- 2. (a) What are the various types of charts used in the method study?

R

Define the term Plant Layout. Bring out comparison between Product Layout and Process Layout. Also explain merits and demerits of each.

(b) Potential locations A, B and C have the cost structures shown for producing a product expected to sell at ₹ 50 per unit. Find the most economical location for an expected volume of 1000 units/year. Also determine the range of annual volume of production for each of the locations A, B and C through Analytical Method. Further information given below:

Location	Fixed Cost / Year	Variable Cost / Unit	
	(₹)	(₹)	
A	12500	25	
В	25000	12.5	
C 40000		7.5	

- 3. (a) Distinguish between MRP 1 and MRP 2. Also write down definitions of terms used in MRP system. 10
 - (b) Explain various elements of production planning control in detail with relevant examples. 10

AF-139 1 P.T.O.

4. (a) Explain types of maintenance. How these types can be utilized in production process?

OR

Explain Total Productive Maintenance.

- (b) A leading plastic bag manufacturer is having a good market in India. Help the company to identify the factors that affect while planning for material requirements.
- 5. (a) Bring out similarities and dissimilarities between domestic operations management and international operations management. Explain the strategic issues involved in international operations management with relevant examples. 10

(b)	Activity	Immediate Preceding Activity	Optimistic Time	Most Likely Time	Pessimistic Time
	A	==	4	7	13
	В	A	6	9	11
	С	A	5	7	9
	D	В	3	5	7
	Е	С	7	8	10
	F	D	2	3	5
	G	Е	6	7	8
	Н	F, G	2	3	4

(1) Draw the network diagram.

10

10

- (2) Compute the expected time for each activity.
- (3) Find the Critical Path.
- (4) Compute the standard deviation of the critical path.

AF-139 2