Seat No. : \qquad

AH-117
 April-2015
 F.Y. M.B.A., Integrated
 Basic Mathematics

Time : 3 Hours]
[Max. Marks : 100
Instructions : (1) Write new questions on new page.
(2) Non-programmable scientific calculator can be used.

1. (a) Define Function. Also give types of a Functions.

(b) Solve following : (any one)
(i) A text book publisher finds that the production cost of each book is ₹ 30 and the fixed cost is ₹ 15,000 . If each book can be sold for ₹ 45 , then determine Break Even Point.
(ii) A shopkeeper earns ₹ 380 in the first week, ₹ 660 in the second week and $₹ 860$ in the third week. On plotting the points $(1,380)$, $(2,660)$ and $(3,860)$, the shopkeeper feels that a quadratic function may fit the data. Find the quadratic function that fits the data. Also estimate the earning of the fourth week.
2. (a) Solve following : (any two)
(i) $\lim _{x \rightarrow 1} \frac{\frac{x^{2}}{2}-1}{x^{\frac{3}{2}}-1}$
(ii) $\lim _{x \rightarrow \infty}\left(1+\frac{5}{3 x}\right)^{x}$
(iii) $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-5 x+3}{x^{3}-6 x^{2}+9 x-4}$
(b) (i) Define Continuity.
(ii) Discuss the continuity of $\mathrm{f}(x)$ at $x=4$

$$
\left.\begin{array}{rlrl}
\mathrm{f}(x) & =\frac{\sqrt{x}-2}{x-4} & , & \\
x \neq 4 \\
& =\frac{1}{4} & , & x
\end{array}\right)
$$

3. Differentiate following with respect to x : (any four)
(1) If $x=t \cdot e^{t}, y=1+\log t$ then find $\frac{d y}{d x}$
(2) $\mathrm{y}=(\cos x)^{\sin x}$
(3) $x y+x+y-2=0$
(4) $\mathrm{y}=x^{2} \cdot \mathrm{e}^{x} \cdot \log x$
(5) $y=\log \left(11 x^{2}+7 x+3\right)^{\frac{5}{2}}$
4. Solve following : (any two)
(1) If $\mathrm{y}=\frac{x}{\sqrt{1+x^{2}}}$ then prove that $x^{3} \cdot \frac{\mathrm{dy}}{\mathrm{d} x}=\mathrm{y}^{3}$.
(2) A manufacturer produces x units per week at a total cost of $₹ \frac{x^{2}}{2}-800 x-400$. The demand law of the commodity is $\mathrm{p}=200-\frac{x}{2}$. Find the profit function. How many units should be manufactured to get maximum profit ? Also obtain the maximum profit.
(3) A rectangle of area 400 sq. metres is to be constructed. Find its length and breadth so that its perimeter is minimum.
5. Solve following : (any two)
(1) Prove following without expanding the determinants:
$\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$
(2) If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right] B=\left[\begin{array}{ll}1 & X \\ 4 & Y\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}$, find value of X and Y.
(3) A person buys 2 pineapples, 3 mangoes and 4 apples in ₹ 43 . Another person buys 1 pineapple, 4 mangoes and 2 apples in ₹ 34 and a third person buy 5 pineapples, 2 mangoes and 3 apples in ₹ 66 . Find price of each fruit using matrix inverse method.
