\qquad

AF-116

April-2015
B.Sc., Sem.-VI :

STA-310 : STATISTICS

(Operations Research)

Time : 3 Hours]
[Max. Marks : 70
Instructions: (i) All questions carry equal marks.
(ii) Scientific calculator is allowed.

1. (a) Write the algorithm to solve a linear programming problem by simplex method.

Write general form of Linear Programming Problem also with reference to LPP. define the following terms :
(i) Optimum solution
(ii) Feasible solution
(iii) Artificial variables
(b) Define Duality in linear programming problem.

Prove that dual of dual is primal. Verify the above statement for the following linear programming problem :

Maximize $\mathrm{Z}=20 \mathrm{X}_{1}+10 \mathrm{X}_{2}$
Subject to $4 X_{1}+8 X_{2} \geq 32,2 X_{1}+10 X_{2} \geq 30 ; X_{1} \geq 0, X_{2} \geq 0$. OR

A manufacturer has two machines A and B. He manufactures two products P and Q on these machines. For manufacturing product P he has to use machine A for 3 hours and machine B for 6 hours, and for manufacture product Q he has to use machine A for 6 hours and machine B for 5 hours. On each unit of P he earns ₹ 4 and on each unit of Q he earns ₹ 5 . How many units of P and Q should be manufactured to get maximum profit ? Each machine cannot be used for more than 2100 hours.
2. (a) What is transportation problem ? Explain general transportation table and give its mathematical form.

OR
Explain transportation problem as a particular case of linear programming problem. Also solve the following transportation problem by VAM and obtain the optimum solution to minimize the total transportation cost :

Origins		Destinations				Supply
		D_{1}	D_{2}	D_{3}	D_{4}	
	O_{1}	21	13	25	13	11
	O_{2}	17	18	14	23	13
	O_{3}	32	27	18	41	19
Requirement		6	10	12	15	

(b) What is assignment problem ? Explain Hungarian method to solve assignment problem. How will you deal with unbalanced Assignment problem?

OR

Give comparison between transportation problem and assignment problem.
3. (a) Explain the Johnson's procedure to determine an optimum sequence for processing n items on 2 machines.

OR

The cost price of an item is ₹ 7,000 . Annual operating cost is ₹ 300 for the first year and then increases by ₹ 1500 every year. After how many years should the item be replaced ?
(b) A machine costs ₹ 9,500. Its annual maintenance cost and resale price for every year are given below. Determine at which year it is advisable to replace the machine.

Year	1	2	3	4	5	6
Maintenance Cost (₹)	400	600	700	1000	2000	3000
Resale price (₹)	8000	6000	5000	2000	1000	500
OR						

State the use of replacement theory.
A machine cost ₹ 12,200 and its scrap value is ₹ 200 , a constant. Its maintenance expense is known from the past experience as follows. After how many years should the machine be replaced ?

Year	1	2	3	4	5	6	7	8
Maintenance Cost (₹)	200	500	800	1200	1800	2500	3200	4000

4. (a) Explain the following with reference to PERT :
(i) Activity
(ii) Event
(iii) Expected Time
(iv) Optimistic time
(v) Pessimistic time
(vi) Most likely time
(vii) Total Float

OR

Give full-form of PERT and CPM. Give the difference between PERT and CPM.
(b) A project consists of a series of tasks labeled A, B, C, D, E, F, G, H, I with following relationships. Construct a PERT network having the following constraints. Also determine the critical path.
$A<B, C ; C<E ; B<D, F ; E, D<G ; G, F<H ; H<1$

TASK :	A	B	C	D	E	F	G	H	I
TIME :	15	18	18	14	24	16	20	13	9

OR
For the project consisting of the following activities, draw network for the project and determine the critical path, total float, free float.

Activity :	$1-2$	$1-3$	$1-4$	$2-4$	$3-4$	$4-5$
Activity (time) :	20	25	10	12	6	10

5. Write answers in brief :
(i) What is degenerate basic feasible solution?
(ii) What is the main limitation of graphical method of solving linear programming problem?
(iii) Define the term : Decision variables.
(iv) What do you mean by balanced transportation problem ?
(v) How many solutions can be obtained for an assignment problem of order 5×5 ?
(vi) What is the nature of average maintenance cost for replacement problem?
(vii) What is replacement problem?
(viii) Give the formula for calculating expected time of an activity.
(ix) What float time means?
(x) What is the role of Slake and Surplus variable in LPP ?
(xi) Which method is best to obtain optimum solution in transportation problem?
(xii) State the mathematical form of assignment problem.
(xiii) Define : Linear Programming problem.
(xiv) What do you mean by dummy activity?
