Seat No. : _____

AF-116 April-2015

B.Sc., Sem.-VI : STA-310 : STATISTICS (Operations Research)

Time : 3 Hours]

[Max. Marks : 70

Instructions :	(i)	All questions carry equal marks.
	(ii)	Scientific calculator is allowed.

1. (a) Write the algorithm to solve a linear programming problem by simplex method. 7

OR

Write general form of Linear Programming Problem also with reference to LPP. define the following terms :

- (i) Optimum solution
- (ii) Feasible solution
- (iii) Artificial variables
- (b) Define Duality in linear programming problem.

7

Prove that dual of dual is primal. Verify the above statement for the following linear programming problem :

Maximize $Z = 20X_1 + 10X_2$

Subject to $4X_1 + 8X_2 \ge 32$, $2X_1 + 10X_2 \ge 30$; $X_1 \ge 0$, $X_2 \ge 0$.

OR

A manufacturer has two machines A and B. He manufactures two products P and Q on these machines. For manufacturing product P he has to use machine A for 3 hours and machine B for 6 hours, and for manufacture product Q he has to use machine A for 6 hours and machine B for 5 hours. On each unit of P he earns $\mathbf{\overline{\xi}}$ 4 and on each unit of Q he earns $\mathbf{\overline{\xi}}$ 5. How many units of P and Q should be manufactured to get maximum profit ? Each machine cannot be used for more than 2100 hours.

AF-116

2. (a) What is transportation problem ? Explain general transportation table and give its mathematical form.

OR

Explain transportation problem as a particular case of linear programming problem. Also solve the following transportation problem by VAM and obtain the optimum solution to minimize the total transportation cost :

		J	Destinations					
		D ₁	D ₂	D ₃	D_4	Supply		
Origins	O ₁	21	13	25	13	11		
	0 ₂	17	18	14	23	13		
	O ₃	32	27	18	41	19		
Requirement		6	10	12	15			

(b) What is assignment problem ? Explain Hungarian method to solve assignment problem. How will you deal with unbalanced Assignment problem ?

OR

Give comparison between transportation problem and assignment problem.

3. (a) Explain the Johnson's procedure to determine an optimum sequence for processing n items on 2 machines.

OR

The cost price of an item is ₹ 7,000. Annual operating cost is ₹ 300 for the first year and then increases by ₹ 1500 every year. After how many years should the item be replaced ?

(b) A machine costs ₹ 9,500. Its annual maintenance cost and resale price for every year are given below. Determine at which year it is advisable to replace the machine.

Year	1	2	3	4	5	6
Maintenance Cost (₹)	400	600	700	1000	2000	3000
Resale price (₹)	8000	6000	5000	2000	1000	500

AF-116

7

7

7

State the use of replacement theory.

A machine cost ₹ 12,200 and its scrap value is ₹ 200, a constant. Its maintenance expense is known from the past experience as follows. After how many years should the machine be replaced ?

Year	1	2	3	4	5	6	7	8
Maintenance Cost (₹)	200	500	800	1200	1800	2500	3200	4000

4. (a) Explain the following with reference to PERT :

- (i) Activity
- (ii) Event
- (iii) Expected Time
- (iv) Optimistic time
- (v) Pessimistic time
- (vi) Most likely time
- (vii) Total Float

OR

Give full-form of PERT and CPM. Give the difference between PERT and CPM.

(b) A project consists of a series of tasks labeled A, B, C, D, E, F, G, H, I with following relationships. Construct a PERT network having the following constraints. Also determine the critical path.

7

A < B, C; C < E; B < D, F; E, D < G; G, F < H; H < 1

TASK :	А	В	С	D	Е	F	G	Н	Ι
TIME :	15	18	18	14	24	16	20	13	9

OR

For the project consisting of the following activities, draw network for the project and determine the critical path, total float, free float.

Activity :	1-2	1-3	1-4	2-4	3-4	4-5
Activity (time) :	20	25	10	12	6	10

AF-116

7

- 5. Write answers in brief :
 - (i) What is degenerate basic feasible solution ?
 - (ii) What is the main limitation of graphical method of solving linear programming problem ?
 - (iii) Define the term : Decision variables.
 - (iv) What do you mean by balanced transportation problem ?
 - (v) How many solutions can be obtained for an assignment problem of order 5×5 ?
 - (vi) What is the nature of average maintenance cost for replacement problem ?
 - (vii) What is replacement problem ?
 - (viii) Give the formula for calculating expected time of an activity.
 - (ix) What float time means ?
 - (x) What is the role of Slake and Surplus variable in LPP ?
 - (xi) Which method is best to obtain optimum solution in transportation problem ?
 - (xii) State the mathematical form of assignment problem.

(xiii) Define : Linear Programming problem.

(xiv) What do you mean by dummy activity ?

14