\qquad

AC-117

April-2015

B.Sc., Sem.-VI
 STA-307 : STATISTICS
 (Distribution Theory - II)

Time : 3 Hours]
[Max. Marks : 70
Instructions : (1) All questions are of equal marks.
(2) Scientific Calculator is allowed to use.
(3) Statistical table will be supplied on request.

1. (a) State standard Cauchy distribution. Let X be a random variable having standard Cauchy distribution. Obtain the probability density function of X^{2} and identify the resulting distribution.

OR

State Laplace distribution with scale parameter λ and location parameter μ. For this distribution show that

$$
\mu_{\mathrm{r}}^{\prime}=\frac{1}{2} \sum_{\mathrm{k}=0}^{\mathrm{r}}\left[\binom{\mathrm{r}}{\mathrm{k}} \lambda^{\mathrm{k}} \mu^{\mathrm{r}-\mathrm{k}} \mathrm{k}!\left\{1+(-1)^{\mathrm{k}}\right\}\right]
$$

Hence deduce mean and variance of the distribution.
(b) For a random variable X let $E(X)=m$ and $V(X)=s^{2}$. If $Y=\log X$ is normal distributed with mean μ and variance σ^{2}, prove that
(i) $\mathrm{m}=\exp \left(\mu+\frac{\sigma^{2}}{2}\right)$ and (ii) $1+\frac{\mathrm{s}^{2}}{\mathrm{~m}^{2}}=\mathrm{e}^{\sigma^{2}}$

OR
State two parameters Cauchy distribution. Obtain its characteristic function. Hence deduce that the distribution of $\overline{\mathrm{X}}$, mean of n observations from standard Cauchy distribution, is also a standard Cauchy.
2. (a) State bivariate normal distribution. Obtain its moment generating function. Deduce it for standard bivariate normal distribution.

OR

Show that (X, Y) possesses a bivariate normal distribution if and only if every linear combination of X and Y viz, $\mathrm{aX}+\mathrm{bY}, \mathrm{a} \neq 0, \mathrm{~b} \neq 0$ is a normal variate.
(b) Let $(\mathrm{X}, \mathrm{Y}) \sim \mathrm{BN}(0,0,1,1, \rho)$. For this distribution obtain the recurrence relation

$$
\mu_{\mathrm{rs}}=(\mathrm{r}+\mathrm{s}-1) \rho \mu_{\mathrm{r}-1, \mathrm{~s}-1}+(\mathrm{r}-1)(\mathrm{s}-1)\left(1-\rho^{2}\right) \mu_{\mathrm{r}-2, \mathrm{~s}-2} \text {. Hence deduce }
$$ that $\mu_{\mathrm{rs}}=0$ if $\mathrm{r}+\mathrm{s}$ is odd.

OR

If the exponent of e in a bivariate normal density is

$$
-1352\left[25(x-1)^{2}-\frac{480}{13}(x-1)(y-2)+16(y-2)^{2}\right]
$$

Obtain: (i) The mean and variance of the conditional distribution of Y given $\mathrm{X}=3$.
(ii) $\mathrm{P}(1<\mathrm{Y}<3 / \mathrm{X}=3)$.
3. (a) State and prove Chebychev's inequality. Hence check whether there exist a variate X with $E(X)=\mu$ and $V(X)=\sigma^{2}$, for which $P(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=0.6$.

OR
Let X follows uniform $\mathrm{U}(-1,3)$ distribution. Obtain upper bound for the probability P $\left\{|X-1| \geq \frac{4}{3}\right\}$. Compare your answer with the exact probability.
(b) State weak law of large numbers (WLLN). Let $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ be a sequence of uniform distributed random variables over $\left(-\beta \mathrm{n}^{\lambda}, \beta \mathrm{n}^{\lambda}\right), \beta>0, \lambda>0$.Test whether (WLLN) hold for $\left\{X_{n}\right\}$.

OR

State convergence in probability. Let $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ be a sequence of random variables with $P\left(X_{n}=\frac{2^{r-n}}{2 n}\right)=\binom{n}{r}(1 / 2)^{n}, r=0,1,2, \ldots ., n$. Show that the sequence $\left\{X_{n}\right\}$ converges in probability to zero.
4. (a) State and prove Lindbery-Levy Central Limit Theorem (CLT).

OR

State Liapounov's form of central limit theorem. Let $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ be a sequence of independent Bernoulli variates with $P\left(X_{n}=1\right)=p_{n}=1-P\left(X_{n}=0\right)$. Show that $\left\{X_{n}\right\}$ obeys CLT.
(b) Let $\left\{X_{n}\right\}$ be sequence of iid Poisson variates with $E\left(X_{1}\right)=2$. Find $\mathrm{P}\left(190<\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{100}<210\right)$ using CLT.

OR

Let $\left\{X_{n}\right\}$ be sequence of iid standard normal variates find $\mathrm{P}\left(60<\mathrm{X}_{1}^{2}+\mathrm{X}_{2}^{2}+\ldots+\mathrm{X}_{50}^{2}<80\right)$ using CLT.
5. Answer the following :
(i) State the distribution for which WLLN cannot be apply.
(ii) Let (X, Y) $\sim \operatorname{BN}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. Under what condition X and Y will be independent random variables?
(iii) State Cauchy-Schwartz inequality.
(iv) State convergence in distribution.
(v) State two properties of convergence in probability.
(vi) When CLT and WLLN hold for a sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$?
(vii) Let $\mathrm{Y}=\log \mathrm{X}$ follows normal $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution. State the distribution of e^{y}.
(viii) State Bernoulli's Law of large numbers.
(ix) State necessary and sufficient condition for sequence $\left\{X_{n}\right\}$ to satisfy the WLLN.
(x) State characteristic function of standard Laplace distribution.
(xi) If X and Y are standard normal variates with correlation coefficient ρ, then state the distribution of

$$
\frac{\left(X^{2}-2 \rho X Y+Y^{2}\right)}{\left(1-\rho^{2}\right)}
$$

(xii) Let (X, Y) ~BN ($0,0,1,1, \rho$). State the distribution of Y/X.
(xiii) Let $(\mathrm{X}, \mathrm{Y}) \sim \mathrm{BN}(2,3,4,9,0.7)$. What is the prob $\mathrm{P}(\mathrm{X}<2)$?
(xiv) State general form of T cheby chev's inequality.

