Seat No. : _____

AE-111

April-2015

B.Sc., Sem.-VI (CBCS System)

MAT-309 : Mathematics Analysis – III

[Max. Marks: 70

Instructions : (1) **All** questions are compulsory.

Time : 3 Hours]

- (2) Each question carry equal marks.
- 1. (A) Let X be a complete metric space and let Y be a subspace of X. Prove that Y is complete if and only if it is closed.

OR

Let X be a metric space. A subset F of X is closed if and only if its complement F' is open.

- (B) Define Metric space. Let X be a metric space. Then prove that
 - (1) Any union of open sets in X is open
 - (2) Any finite intersection of open sets in X is open

OR

Show that the set of all real numbers R with the distance from x to y defined by

 $d(x, y) = \frac{|x - y|}{1 + |x - y|}$ is a metric space.

2. (A) The metric space (X, d) is compact if and only if every sequence of points in X has subsequence converging to a point in X.

OR

Let X and Y be metric spaces and f a mapping of X into Y. Then f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.

(B) If f is a continuous mapping of a compact metric space X into a metric space Y, then f(X) is compact.

OR

Let X and Y be metric spaces and f a mapping of X into Y then prove that f is continuous at x_0 if and only if $f(x_n) \to f(x_0)$ whenever $x_n \to x_0$.

3. (A) Let (f_n) be a sequence of functions in R [a, b] converging uniformly to f. Then

prove that
$$f \in R[a, b]$$
 and $\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$.
OR

Find pointwise limit of $f_n(x)$ defined as follow if it exist. Determine whether $f_n(x)$ converges uniformly on the given set. Where $f_n(x) = \frac{x}{1 + nx}$; $x \in [0, 1]$.

AE-111

P.T.O.

- (B) Let f_n satisfy
 - (i) $f_n \in D[a, b]$
 - (ii) $(f_n(x_0))$ converges for some $x_0 \in [a, b]$
 - (iii) f_n' Converges uniformly on [a, b]

then prove that f_n converges uniformly on [a, b] to a function f.

OR

Show that the series $\sum_{k=1}^{\infty} (xe^{-x})^k$ is uniformly convergent in [0, 2].

4. (A) State and prove Weierstrass Approximation theorem.

OR

State and prove Abel's limit theorem.

(B) If a function is represented by the power series of radius of convergence r > 0, then the power series is the Taylor's series of the function in the neighbourhood {x ∈ R : |x| < r} of the origin.

OR

For every
$$x \in \mathbb{R}$$
, and $n > 0$, prove that $\sum_{k=0}^{\infty} (nx-k)^2 {n \choose k} x^k (1-x)^{n-k} = nx (1-x) \le n/4$

- 5. Answer in short : (Any seven)
 - (1) Define open set.
 - (2) Define close set.
 - (3) Define uniform convergence.
 - (4) Let X be a non-empty set and let d be a real function of ordered pairs of elements of X which satisfies the condition $d(x, y) = 0 \Leftrightarrow x = y$. Is d metric on X ? Justify your answer.
 - (5) Explain Taylor's series.
 - (6) If $f_n(x) = \frac{1}{1 + nx}$ ($x \ge 0$) then check continuity of $f_n(x)$.

(7) Is
$$f_n(z) = 1 + z + z^2 + \dots + z^{n-1}$$
 uniform convergent '

(8) Show that the sum function $s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^{\alpha}}$ is uniform continuous on [-1, 1] for $\alpha > 1$.

(9) Show that
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
 for $-1 \le x \le 1$.

AE-111