\qquad
AF-112
April-2015
B.Sc., Sem.-VI

MAT-310 : Mathematics
(Graph Theory)
Time : 3 Hours]
[Max. Marks : 70
Instructions : (1) There are five questions.
(2) Each question carries $\mathbf{1 4}$ marks.
(3) Draw figure / graph wherever necessary.

1. (a) Define the following term with proper graph :
(i) Complete Graph
(ii) Multi-graph
(iii) Adjacent edges
(iv) Parallel edges

OR

Define the following term with proper graph :
(i) Simple graph
(ii) Loop
(iii) Isomorphic graph
(iv) n -regular graph
(b) State and prove "First Theorem of Graph Theory".

OR

Let G be a non-empty graph with atleast two vertices, then prove that G is bipartite if and only if it has no odd cycle.
2. (a) Let G be a graph with n vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$ and let A denote the adjacency matrix of G w.r.t. this listing of the vertices. Let $B=\left(b_{i j}\right)$ be the matrix $B=A+A^{2}+\ldots+A^{n-1}$. Then G is connected graph iff B has no zero entries-off the main diagonal.

OR

Let e be an edge of the graph G and $\mathrm{G}-\mathrm{e}$ be the subgraph obtained by deleting e, then $\mathrm{W}(\mathrm{G}) \leq \mathrm{G}(\mathrm{G}-\mathrm{e}) \leq \mathrm{W}(\mathrm{G})+1$. (Where $\mathrm{W}(\mathrm{G})$ is the number of connected components).
(b) Write down the adjacency matrix and incidence matrix for the following graph :

OR
Write down the adjacency matrix and incidence matrix for the following graph :

3. (a) The complete graph K_{n} has $\mathrm{n}^{\mathrm{n}-2}$ different spanning trees.

OR

Let G be simple graph with atleast three vertices then G is 2-connected if and only if for each pair of distinct vertices u and v of G, there are two internally disjoint u v path in G.
(b) Give seven different spanning trees of K_{4}.

OR
Let G be a graph with n vertices (where $n \geq 2$), then G has atleast two vertices which are not cut vertices.
4. (a) Discuss Konigsberg bridge problem.

OR

A connected grpah G has an Euler trail if and only if it has atmost two odd vertices.
(b) If G is simple graph with n-vertices (when $n \geq 3$) and the $d(u) \geq \frac{n}{2}$ for every vertex v of G, then prove that G is Hamiltonian.

OR

Discuss "The Travelling Salesman Problem."
5. Answer in short : (Attempt any seven)
(i) What is the smallest integer n such that the complete graph K_{n} has atleast 500 edges?
(ii) Draw Petersen Graph.
(iii) Give two trees with 7 vertices.
(iv) Let G be a connected with 17 edges then what is the maximum possible number of the vertices in G ?
(v) Discuss whether complete graph K_{4} is Euler or not.
(vi) How many different Hamiltonian cycles for complete graph K_{5} ?
(vii) Define : Cut vertex with graph.
(viii) Draw self-complementary graph with 4 or 5 vertices.
(ix) Define : "Underlying simple graph" with proper graph.

