Seat No. : \_\_\_\_\_

# AF-112

# April-2015

## B.Sc., Sem.-VI

# MAT-310 : Mathematics (Graph Theory)

### Time : 3 Hours]

[Max. Marks: 70

**Instructions :** (1) There are **five** questions.

- (2) Each question carries **14** marks.
- (3) Draw figure / graph wherever necessary.
- 1. (a) Define the following term with proper graph :
  - (i) Complete Graph
  - (ii) Multi-graph
  - (iii) Adjacent edges
  - (iv) Parallel edges

#### OR

Define the following term with proper graph :

- (i) Simple graph
- (ii) Loop
- (iii) Isomorphic graph
- (iv) n-regular graph
- (b) State and prove "First Theorem of Graph Theory".

#### OR

Let G be a non-empty graph with atleast two vertices, then prove that G is bipartite if and only if it has no odd cycle.

2. (a) Let G be a graph with n vertices  $v_1, v_2, ..., v_n$  and let A denote the adjacency matrix of G w.r.t. this listing of the vertices. Let  $B = (b_{ij})$  be the matrix  $B = A + A^2 + ... + A^{n-1}$ . Then G is connected graph iff B has no zero entries-off the main diagonal.

#### OR

Let e be an edge of the graph G and G – e be the subgraph obtained by deleting e, then  $W(G) \leq G(G - e) \leq W(G) + 1$ . (Where W (G) is the number of connected components).

(b) Write down the adjacency matrix and incidence matrix for the following graph :



Write down the adjacency matrix and incidence matrix for the following graph :



3. (a) The complete graph  $K_n$  has  $n^{n-2}$  different spanning trees.

#### OR

Let G be simple graph with atleast three vertices then G is 2-connected if and only if for each pair of distinct vertices u and v of G, there are two internally disjoint u-v path in G.

(b) Give seven different spanning trees of  $K_4$ .

#### OR

Let G be a graph with n vertices (where  $n \ge 2$ ), then G has atleast two vertices which are not cut vertices.

4. (a) Discuss Konigsberg bridge problem.

#### OR

A connected grpah G has an Euler trail if and only if it has atmost two odd vertices.

(b) If G is simple graph with n-vertices (when  $n \ge 3$ ) and the  $d(u) \ge \frac{n}{2}$  for every vertex v of G, then prove that G is Hamiltonian.

#### OR

Discuss "The Travelling Salesman Problem."

- 5. Answer in short : (Attempt any **seven**)
  - (i) What is the smallest integer n such that the complete graph K<sub>n</sub> has atleast 500 edges ?
  - (ii) Draw Petersen Graph.
  - (iii) Give two trees with 7 vertices.
  - (iv) Let G be a connected with 17 edges then what is the maximum possible number of the vertices in G ?
  - (v) Discuss whether complete graph  $K_4$  is Euler or not.
  - (vi) How many different Hamiltonian cycles for complete graph  $K_5$ ?
  - (vii) Define : Cut vertex with graph.
  - (viii) Draw self-complementary graph with 4 or 5 vertices.
  - (ix) Define : "Underlying simple graph" with proper graph.