\qquad

AC-113

April-2015

B.Sc., Sem.-VI

MAT-307
Abstract Algebra-II
Time : 3 Hours]
[Max. Marks : 70
Instructions : (1) All questions are compulsory and carry $\mathbf{1 4}$ marks.
(2) Figures to the right indicate marks of the question/sub question.
(3) Notations are as usual.

1. (a) Define the following terms with examples :
(i) Division Ring
(ii) Integral Domain
(iii) Field OR
Prove that every finite integral domain is a field.
(b) Prove that each non-zero element of $F=\{a+b \sqrt{2} / a, b \in \mathbb{Q}\}$ is a unit element.

OR

Define characteristic of a ring.
Prove that the characteristic of an integral domain is either prime number or zero.
2. (a) Define 'Principal ideal'.

Prove that the ring $(\mathrm{Z},+,$.$) of all integers is the principal ideal ring.$
OR
Define ideal in a ring. Give an example of :
(i) Left ideal which is not right ideal.
(ii) Right ideal which is not left ideal.
(iii) Both sided ideal.
(b) Define Kernel of a ring homomorphism.

If f is a homomorphism of ring R into a ring R ' with kernel K, then prove that K is an ideal of ring R .

OR
Prove that a field has no proper ideal.
AC-113
3. (a) Find the G.C.D. of polynomials.
$\mathrm{f}(x)=x^{3}-3 x^{2}+2 x-6$ and $\mathrm{g}(x)=x^{3}-4 x^{2}+4 x-3$ over the field R. Express the G.C.D. as a linear combination of two polynomials.

OR

Define degree of a polynomial in $\mathrm{D}[x]$.
If $\mathrm{f}, \mathrm{g} \in \mathrm{D}[x]$ are nonzero polynomials, then prove that deg
$(\mathrm{fg})=\operatorname{deg}(\mathrm{f})+\operatorname{deg}(\mathrm{g})$.
(b) State and prove Remainder theorem.

Also find all zeroes of $x^{4}+3 x^{3}+2 x+4 \in \mathrm{Z}_{5}[x]$ in Z_{5}.
OR
State and prove Division algorithm for polynomials.
4. (a) An ideal I in a commutative ring R with unity is a prime ideal iff the quotient ring R / I is an integral domain.

OR

An ideal I in a commutative ring R with unity is maximal ideal iff the quotient ring R / I is a field.
(b) Give an example of a ring in which some prime ideal is not a maximal ideal.

OR

Prove that field $\mathrm{Q}[x] /<x^{2}-2>$ is isomorphic to field $\mathbb{Q}(\sqrt{2})$.
5. Answer in short : (any seven)
(i) Define 'unit element' in a ring with unity.
(ii) Is the ring $\left(\mathbb{Z}_{6},+_{6}, \times_{6}\right)$ an integral domain ?
(iii) Prove that Boolean ring is a commutative ring.
(iv) Give an example of a subring which is not an ideal in some ring.
(v) Is the ideal generated by single element a principal ideal? What is ideal generated by 1 in the ring $(\mathrm{Z},+,$.$) ?$
(vi) Is the polynomial $\mathrm{f}(x)=x^{2}+9$ reducible in $\mathbb{Q}[x]$? Also check its reducibility in $\mathbb{C}[x]$.
(vii) Define associate polynomials.
(viii) State Eisenstein criterion for irreducibility.
(ix) Is the ideal $\langle 4\rangle$ maximal ideal in the ring of integers? Justify your answer.
(x) List all possible rational zeroes of $\mathrm{f}(x)=4 x^{5}+x^{3}+x^{2}-3 x+1$.

