\qquad

BC-102

May-2015

B.Sc., Sem.-IV

CC-204 : Electronics

Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) All questions carry equal marks.
(2) Symbols used here have their usual meanings.

1. (a) What is the role of feedback network in RC oscillators? Discuss the RC phaseshift oscillator in detail.

OR

Differentiate between the Colpitt's and Hartley oscillators circuit. Draw the circuit of Hartley oscillator and explain its working.
(b) List the types of multi-vibrators and explain transistorized bistable multi-vibrator in detail.

OR
A rectangular pulse of voltage is applied to the base of a transistor driven into heavy saturation. Explain different switching times in a transistor with the help of waveforms.
2. (a) Prove that the optimum conversion efficiency in pure class-B push-pull amplifier circuit is 78.5%.

OR
What disadvantages are there in a single ended transformer coupled power amplifier? Explain the transformer saturation.
(b) What principal factor contributes to the doubling of the conversion efficiency in a transformer coupled load amplifier compared with an amplifier with a direct coupled resistive load? What other advantages does the transformer provide?

OR
Explain cross-over distortion. What it is caused by, and how it is overcome?
3. (a) List the basic processes used in silicon planar technology. Write a note on photolithography.

Explain the method used for fabricating diffused type IC resistor. Give the dimensions of a 4000Ω defused resistor.
(b) Discuss the various ways for fabricating pnp transistors.

OR

Explain importance of SiO_{2} layer. How thick is this layer?
4. (a) Draw the circuit diagram of inverting amplifier. Prove $A_{C L}=-R_{f} / R_{1}$ for inverting OP-AMP. Design an amplifier with a gain of -10 and input resistance equal to $10 \mathrm{k} \Omega$.

OR

Describe the terms (1) input bias current (2) input offset current (3) input offset voltage (4) thermal drift.
(b) For non inverting amplifier prove $A_{C L}=1+\left(R_{f} / R_{1}\right)$. What is voltage follower ?

OR

A square wave of peak-to-peak amplitude of 500 mV has to be amplified to peak-to-peak amplitude of 3 volts, with a rise time of $4 \mu \mathrm{~S}$. Calculate slew rate. Can a 741 be used?
5. Answer in short :
(1) What disadvantage does a phase-shift oscillator have ?
(2) Where resonant type oscillators are used?
(3) An astable multi-vibrator has component values $\mathrm{R}_{\mathrm{B} 1}=\mathrm{R}_{\mathrm{B} 2}=\mathrm{R}=10 \mathrm{k} \Omega$, and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}=120 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Find frequency of oscillation.
(4) How many stable states does an astable multi-vibrator have ?
(5) What type of bias is used in a true class B push-pull amplifier ?
(6) What are the advantages does push-pull provide ?
(7) The maximum theoretical conversion efficiency of a class A amplifier utilizing a direct coupled resistive load is \qquad .
(8) Give any two advantages of integrated circuits over the circuits those made by interconnecting discrete components.
(9) What is the full form of SiO_{2} ?
(10) What is VLSI ?
(11) Why n-p-n transistors are preferred in integrated circuits compared to p-n-p transistors?
(12) Define slew rate ?
(13) What is the full form of DIP ?
(14) A 741 op amp is available in a 14-pin DIP package. What is the pin number for (1) inverting input (2) non-inverting input (3) output

