Seat No. : \qquad

AE-135
 April-2015
 M.Sc., Sem.-IV
 Mathematics
 MAT-507 : Functional Analysis-2

Time : 3 Hours]

[Max. Marks : 70

1. (a) Attempt any one :
(i) If A is a positive operator on H , then prove that $\mathrm{I}+\mathrm{A}$ is non-singular. Hence prove that $\mathrm{I}+\mathrm{T}^{*} \mathrm{~T}$ and $\mathrm{I}+\mathrm{TT}^{*}$ are non-singular for any T in $\mathrm{B}(\mathrm{H})$.
(ii) If T is an operator on H for which $(\mathrm{T} x, x)=0$ for all x, then prove that $\mathrm{T}=0$.
(b) Attempt any two :
(i) Let $\mathrm{H}=\mathbb{R}^{2}, \mathrm{~K}=\mathbb{R}$ and $\mathrm{A} \in \mathrm{BL}(\mathrm{H})$ is given by the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Prove that A is self-adjoint if and only if $b=c$.
(ii) Let H be a Hilbert space. A and B are self-adjoint, then prove that $\mathrm{AB}=0$ if and only if $R(A)$ is orthogonal to $R(B)$.
(iii) By an example, prove that $0 \leq \mathrm{A} \leq \mathrm{B}$ does not imply $\mathrm{A}^{2} \leq \mathrm{B}^{2}$.
(c) Answer very briefly.
(i) Prove that $\left\|\mathrm{TT}^{*}\right\|=\|\mathrm{T}\|^{2}$.
(ii) Prove or disprove the mapping $y \rightarrow f_{y}$ form H to H^{*} is linear.
(iii) Define positive operator. Give an example of self-adjoint operator that is not positive.
2. (a) Attempt any one :
(i) If P is a projection on H with range M and null space N , then prove that $\mathrm{M} \perp \mathrm{N} \Leftrightarrow \mathrm{P}$ is self-adjoint ; and in this case, $\mathrm{N}=\mathrm{M}^{\perp}$.
(ii) If P is the projection on M , then prove that

$$
x \in \mathrm{M} \Leftrightarrow \mathrm{P} x=x \Leftrightarrow\|\mathrm{P} x\|=\|x\| .
$$

(b) Attempt any two :
(i) Prove that the set of all normal operators is a closed subset of BL (H).
(ii) If P and Q are projections on closed linear subspaces M and N of H , then prove that $\mathrm{Q}-\mathrm{P}$ is a projection if and only if $\mathrm{P} \leq \mathrm{Q}$.
(iii) Prove that right shift operator T on l^{2} does not have eigen value.
(c) Answer very briefly:
(i) If T $=4 \mathrm{I}$, then find the spectrum of T .
(ii) Define spectral resolution of T .
(iii) Give an example of a normal operator that is not self-adjoint.
3. (a) Attempt any one :
(i) State and prove (briefly) finite dimensional spectral theorem.
(ii) Define the spectrum of the bounded operator on H . If H is finite dimensional complex Hilbert space then prove that spectrum of any bounded operator on H is non empty.
(b) Attempt any two :
(i) If P and Q are projections on M and N respectively then under what condition $\mathrm{P}+\mathrm{Q}$ is a projection? Explain.
(ii) If x_{1} and x_{2} are eigen vectors corresponding to distinct eigen values λ_{1} and λ_{2} of T, prove that x_{1} and x_{2} are linearly independent.
(iii) Find the spectrum of operator P on \mathbb{R}^{2} defined by $\mathrm{P}(x, \mathrm{y})=(0, \mathrm{y})$.
(c) Answer very briefly :
(i) Define similar matrices. Prove that similar matrices have the same determinant.
(ii) Can a 3×3 real matrix have empty spectrum ? Why?
(iii) The operator T on R^{2} defined by $\mathrm{T}(x, \mathrm{y})=(x+\mathrm{y}, x-\mathrm{y})$ is invertible. True / False ?
4. (a) Attempt any one :
(i) State and prove Gelfand-Mazur theorem.
(ii) Let X be a Banach space then prove that the set G of all invertible operators in $B L(X)$ is open and the inversion map is continuous on the set G.
(b) Attempt any two :
(i) Find the spectrum of $\mathrm{A}(x)=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)$ where $x \in l^{\mathrm{P}}$.
(ii) Characterize the approximate eigen spectrum of T.
(iii) Find spectrum of right shift operator on l^{2}.
(c) Answer very briefly :
(i) For A in $\mathrm{BL}(\mathrm{X})$ define eigen spectrum, approximate eigen spectrum and spectrum.
(ii) Find an operator A whose spectrum is $[0,1]$.
(iii) Find an operator A whose spectrum is $\{\mathrm{i}\}$.
5. (a) Attempt any one :
(i) Prove that $\mathrm{F} \in \mathrm{BL}(\mathrm{X}, \mathrm{Y})$ is compact if and only if for every bounded sequence $\left(x_{\mathrm{n}}\right)$ in $\mathrm{X},\left(\mathrm{F}\left(x_{\mathrm{n}}\right)\right)$ has a subsequence which converges in Y .
(ii) Let X be a normed linear space and $\mathrm{A} \in \mathrm{CL}$ (X). If X is infinite dimensional then prove that 0 is an approximate eigen value of A .
(b) Attempt any two :
(i) Prove that C L (X, Y) is a linear subspace of $\mathrm{BL}(\mathrm{X}, \mathrm{Y})$.
(ii) Prove that every functional is a compact linear map.
(iii) By an example show that 0 can be a spectral value of a compact operator A without being its eigen value.
(c) Answer very briefly :
(i) Give an example of a bounded linear operator that is not compact.
(ii) Prove or disprove a linear map T from $\mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$ is compact.
(iii) True / False : The right shift operator on l^{2} is compact.

