Seat No. : \qquad

AI-104

April-2015

M.Sc., Sem.-IV

Mathematics

MAT-509-EA : Mathematical Methods

Time : 3 Hours]
[Max. Marks : 70

1. (a) Attempt any one :
(i) Solve : $x y^{\prime \prime}+y^{\prime}-x y=0$
(ii) Find the eigen values and eigen functions of the problem

$$
y^{\prime \prime}+\lambda y=0, y(0)=0, y^{\prime}(L)=0
$$

(b) Attempt any two :
(i) Solve $y^{\prime \prime}=y$ in terms of a power series in powers of $x-1$.
(ii) Using the indicated substitutions, reduce the following equation to Bessel's differential equation.

$$
9 x^{2} y^{\prime \prime}+9 x y^{\prime}+\left(36 x^{4}-16\right) y=0,\left(x^{2}=z\right)
$$

(iii) Show that $\frac{\mathrm{J}_{\frac{-1}{2}}}{}(x)=\sqrt{\frac{2}{\pi x}} \cos x$.
(c) Answer very briefly:
(i) Find the radius of convergence of $\sum_{m=0}^{\infty} \frac{x^{2 \mathrm{~m}+1}}{(2 \mathrm{~m}+1) \text { ! }}$.
(ii) Show that $\mathrm{J}_{\mathrm{v}-1}(x)-\mathrm{J}_{\mathrm{v}+1}(x)=2 \mathrm{~J}_{\mathrm{v}}^{\prime}(x)$.
(iii) Show that $\int x^{-\mathrm{v}} \mathrm{J}_{\mathrm{v}+1}(x) \mathrm{d} x=-x^{-\mathrm{v}} \mathrm{J}_{\mathrm{v}}(x)+\mathrm{c}$.
2. (a) Attempt any one :
(i) Using the Laplace transform, solve the following initial value problem.

$$
y^{\prime \prime}-5 y^{\prime}+6 y=4 e^{t}[1-u(t-2)], y(0)=1, y^{\prime}(0)=-2
$$

(ii) State second shifting theorem. Using this theorem find the inverse Laplace transform of $\frac{3\left(1-\mathrm{e}^{-\pi s}\right)}{\mathrm{s}^{2}+9}$.
(b) Attempt any two :
(i) Find the Laplace transform of $(t+1)^{2} e^{t}$.
(ii) Find the inverse Laplace transform of $\frac{1}{\mathrm{~s}\left(\mathrm{~s}^{2}+\mathrm{w}^{2}\right)}$.
(iii) Solve the integral equation:

$$
\mathrm{y}(\mathrm{t})=\mathrm{t}+\int_{0}^{\mathrm{t}} \mathrm{y}(\tau) \sin (\mathrm{t}-\tau) \mathrm{d} \tau
$$

(c) Answer very briefly :
(i) Define unit step function and find its Laplace transform.
(ii) State the formula for the Laplace transform of the $\mathrm{n}^{\text {th }}$ derivative of a function $\mathrm{f}(\mathrm{t})$.
(iii) Find the Laplace transform of $\mathrm{te}^{-\mathrm{t}} \cos \mathrm{t}$.
3. (a) Attempt any one :
(i) Find the two half-range expansions of the function

$$
\mathrm{f}(x)=\left\{\begin{array}{ll}
\frac{2 \mathrm{k}}{\mathrm{~L}} x & \text { if } \quad 0<x<\frac{\mathrm{L}}{2} \\
\frac{2 \mathrm{k}}{\mathrm{~L}}(\mathrm{~L}-x) & \text { if }
\end{array} \frac{\mathrm{L}}{2}<x<\mathrm{L}\right. \text {. }
$$

(ii) Show that

$$
\int_{0}^{\infty} \frac{\cos x \mathrm{w}+\mathrm{w} \sin x \mathrm{w}}{1+\mathrm{w}^{2}} \mathrm{dw}= \begin{cases}0 & \text { if } x<0 \\ \frac{\pi}{2} & \text { if } x=0 \\ \pi \mathrm{e}^{-x} & \text { if } x>0\end{cases}
$$

(b) Attempt any two :
(i) Find the Fourier cosine transform of

$$
\mathrm{f}(x)= \begin{cases}1 & \text { if } 0<x<1 \\ -1 & \text { if } 1<x<2 \\ 0 & \text { if } x>2\end{cases}
$$

(ii) Find the Fourier integral representation of the function

$$
\mathrm{f}(x)= \begin{cases}1 & \text { if }|x|<1 \\ 0 & \text { if }|x|>1\end{cases}
$$

(iii) Let $\mathrm{f}(x)$ be continuous on the x-axis and $\mathrm{f}(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Furthermore, let $\mathrm{f}^{\prime}(x)$ be absolutely integrable on the x-axis. Then prove that $\mathscr{F}\left\{\mathrm{f}^{\prime}(x)\right\}=\mathrm{iw} \mathscr{\mathscr { F }}\{\mathrm{f}(x)\}$.
(c) Answer very briefly :
(i) Is the following function $\mathrm{f}(x)$, which is assumed to be periodic, of period 2π, even, odd or neither even nor odd? Why?

$$
\mathrm{f}(x)= \begin{cases}\cos ^{2} x & \text { if }-\pi<x<0 \\ \sin ^{2} x & \text { if } 0<x<\pi\end{cases}
$$

(ii) What is the smallest positive period p of $\cos \frac{2 \pi \mathrm{n} x}{\mathrm{k}}$?
(iii) Show that $\int_{-\pi}^{\pi} \cos ^{4} x d x=\frac{3 \pi}{4}$
4. (a) Attempt any one :
(i) Prove that if $\mathrm{Z}[\{\mathrm{f}(\mathrm{k})\}]=\mathrm{F}(\mathrm{z})$, then $\mathrm{Z}\left[\left\{\mathrm{a}^{\mathrm{k}} \mathrm{f}(\mathrm{k})\right\}\right]=\mathrm{F}\left(\frac{\mathrm{z}}{\mathrm{a}}\right)$. Using this formula, find the Z-transform of $\mathrm{c}^{\mathrm{k}} \sin \alpha \mathrm{k}, \mathrm{k} \geq 0$.
(ii) Solve the following differential equation by Z -transform

$$
6 y_{k+2}-y_{k+1}-y_{k}=0, y_{0}=0, y_{1}=1
$$

(b) Attempt any two :
(i) Find the Z-transform of $\sin (3 \mathrm{k}+5), \mathrm{k} \geq 0$.
(ii) Find the inverse Z-transform of $\frac{\mathrm{z}}{(\mathrm{z}-1)(\mathrm{z}-2)}$ by residue method.
(iii) State and prove initial value theorem.
(c) Answer very briefly :
(i) What is the inverse Z-transform of $\frac{4 z}{z-a}$, when $|z|>|a|$?
(ii) What is the order of the differential equation $\mathrm{y}_{\mathrm{k}+1}-2 \mathrm{y}_{\mathrm{k}-1}=\mathrm{k}^{2}$?
(iii) State final value theorem.
5. (a) Attempt any one :
(i) Show that if $\mathrm{n}=0$, the Hankel transform :

$$
\mathrm{H}\left\{\frac{\sin \mathrm{a} x}{x}\right\}= \begin{cases}0 & \text { if } \mathrm{s}>\mathrm{a} \\ \frac{1}{\sqrt{\mathrm{a}^{2}-\mathrm{s}^{2}}} & \text { if } 0<\mathrm{s}<\mathrm{a}\end{cases}
$$

(ii) Show that $\int_{0}^{\mathrm{a}} x\left(\mathrm{a}^{2}-x^{2}\right) \mathrm{J}_{0}(\mathrm{~s} x) \mathrm{d} x=\frac{4 \mathrm{a}}{\mathrm{s}^{3}} \mathrm{~J}_{1}($ as $)-\frac{2 \mathrm{a}^{2}}{\mathrm{~s}^{2}} \mathrm{~J}_{0}($ as $)$.
(b) Attempt any two :
(i) Find the Hankel transform of zero order of $\frac{\mathrm{e}^{-\mathrm{ax}}}{x}$.
(ii) Find $\mathrm{H}^{-1}\left[\mathrm{e}^{-\mathrm{as}}\right]$, when $\mathrm{n}=0$
(iii) Find the Hankel transform of the function

$$
\mathrm{f}(x)=\left\{\begin{array}{lll}
x^{\mathrm{n}} & \text { if } 0<x<\mathrm{a}, & \mathrm{n}>-1 \\
0 & \text { if } x>\mathrm{a}, & \mathrm{n}>-1
\end{array}\right.
$$

(c) Answer very briefly:
(i) What is the value of the integral $\int_{0}^{\infty} \mathrm{e}^{-\mathrm{a} x} \mathrm{~J}_{0}(\mathrm{~s} x) \mathrm{d} x$?
(ii) Show that Hankel transform is a linear operation.
(iii) Find $\mathrm{H}\left[\mathrm{e}^{-\mathrm{ax}}\right], \mathrm{n}=1$

