\qquad

11C-130

May-2015
M.Sc., Sem.-II

408 : Physics
(Classical Mechanics-II, Electrodynamics \& Plasma Physics)
Time : 3 Hours]
[Max. Marks : 70

Instructions : (1) Attempt all questions.
(2) All questions carry equal marks.
(3) Symbols have their usual meaning.
(4) Scientific calculator is allowed.

1. (a) Write general form of $2^{\text {nd }}$ order linear differential equation. Explain in detail how phase trajectory can be obtained. What do you mean by singular and ordinary points? In case of $2^{\text {nd }}$ order linear differential equation of the type $\ddot{x}+b x^{3}=0$, obtain necessary equation showing that periodic time explicitly depends on energy.

OR

Show that the phase trajectories of the system whose equations of motion is $\ddot{x}-\sigma^{2} x=0$ are hyperbolic curve with $\mathrm{y}= \pm \sigma x$ as asymptotes. Also obtain parametric equations.
(b) Discuss limit cycles and attractors. What do you mean stable and unstable limit cycles.

OR

Show that the oscillations of a simple pendulum are non-linear with period. $\mathrm{T}=\frac{4}{\omega_{0}} \mathrm{k}\left(\sin \frac{\theta_{0}}{2}\right)$, where $\mathrm{k} \sin \theta_{0} / 2$ is elliptical integral and θ_{0} the angular displacement. Show that for relatively small amplitude $T=T_{0}\left(1+\frac{\theta_{0}{ }^{2}}{16}\right)$, where $\mathrm{T}_{0}=\frac{2 \pi}{\omega_{0}}$.
2. (a) Write transformation equations for the components of electric field $\overline{\mathrm{E}}$ and E as well as magnetic field \bar{B} and B. Using such relations show that
(1) $\overline{\mathrm{E}} \cdot \overline{\mathrm{B}}=\mathrm{E} \cdot \mathrm{B}$
(2) $\overline{\mathrm{E}}^{2}-\mathrm{C}^{2} \overline{\mathrm{~B}}^{2}=\mathrm{E}^{2}-\mathrm{C}^{2} \mathrm{~B}^{2}$

OR

Write Lorentz transformation equations. Show that $(\bar{x})^{\mu}=\sum_{v=0}^{3}\left[\Lambda_{v}^{\mu}\right] x^{v}$. What do you mean by proper velocity ? Also write transformation equation for proper velocity and explain proper acceleration. Find zero ${ }^{\text {th }}$ component of proper acceleration.
(b) Find out the acceleration of charge particle moving in the electromagnetic field.

OR

Write equation of the electric field of charge ' q ' moving with uniform velocity ' v '. Show that such electric field integral over total area of the sphere [radius R] Gauss law is obeyed.
3. (a) Discuss radiation damping phenomenon and obtain the expression of AbrahamLorentz equation. Also using above equation, derive the relation $1=\tau \omega^{2}$.

Show that two particles having charges $\mathrm{e}_{1}, \mathrm{e}_{2}$ and masses $\mathrm{m}_{1}, \mathrm{~m}_{2}$ respectively, are approaching towards each other, then find out dipole moment " P " of the system is given by $P=\mu\left[\frac{e_{1}}{m_{1}}-\frac{e_{2}}{m_{2}}\right] \vec{r}$ where $\vec{r}=$ initial distance between two charge particles and $\mu=$ reduced mass. Also show that is particles are identical then dipole radiation is zero.
(b) Derive the Rayleigh's scattering expression for the bound charge particle.

OR

Obtain the dispersion relation for dilute gases
$\eta^{2}=1+\sum_{\alpha} \frac{N f_{\alpha} \mathrm{e}^{2}}{\mathrm{~m}_{\alpha} \varepsilon_{0}}\left[\frac{1}{\left(\omega_{\alpha}{ }^{2}-\omega^{2}\right)-\mathrm{il}_{\alpha} \omega}\right]$
4. (a) Derive Boltzmann-Vlasov equation with and without collision term.

OR
Write the B-V equation and obtain $1^{\text {st }}$ and $2^{\text {nd }}$ moment equations and write your comment on moment equations.
(b) (1) For a fully ionized plasma, conductivity is almost infinity, then show that velocity is perpendicular to \vec{E} and \vec{B} both.
(2) Show that polarization current densitiy $\overrightarrow{\mathrm{J}}_{\mathrm{P}}=\mathrm{n}_{0} \frac{\left(\mathrm{~m}_{\mathrm{i}}+\mathrm{m}_{\mathrm{e}}\right)}{\mathrm{B}^{2}} \overrightarrow{\mathrm{E}}$

OR

Obtain Liouville equation for the distribution of ' N ' particles in 6-D space $\frac{\partial \mathrm{f}^{(\mathrm{N})}}{\partial \mathrm{t}}+\sum_{\alpha=1}^{\mathrm{N}}\left(\mathrm{V}_{\alpha} \cdot \vec{\nabla}_{\mathrm{r} \alpha} \mathrm{f}^{\mathrm{f}} \mathrm{N}\right)+\vec{\alpha}_{\alpha} \cdot \vec{\nabla}_{\mathrm{v} \alpha} \mathrm{f}^{(\mathrm{N})}=0$
5. Write short answers :
(1) What will be angular velocity of the simple pendulum at extreme points?
(2) What is saddle point?
(3) 'Lorentz transformation matrix is a symmetric matrix.' (True / False)
(4) What will be the dimension of the factor ' β ' in the Lorentz transformation equation?
(5) What is focal point?
(6) What do you mean by separative ?
(7) If $\mathrm{b}^{2}>\omega_{0}{ }^{2}$, the motion is overdamped or undamped.
(8) State the relation between energy (eV) and temperature $\left({ }^{\circ} \mathrm{K}\right)$.
(9) Define Magneto-hydrodynamics.
(10) In case of Rayleigh scattering, what is the scattering cross-section value if $\omega \lll \omega_{0}$ and $\omega_{1} \lll \omega_{0}^{2}$?
(11) State the relation between dipole moment and di-electric susceptibility.
(12) Define skin depth.
(13) At what temperature ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ are at same scale?
(14) When collision is predominates equation and collision is negligible then equation is applicable.

