Seat No. : _____

11C-129 May-2015 M.Sc. Sem.-II 408 : Mathematics (Algebra-I)

Time : 3 Hours]

[Max. Marks : 70

11C	-129	1 P.T.C
		direct product is isomorphic to external direct product.(ii) State (only) Fundamental theorem of finite Abelian group. Find the isomorphism class of U(24).
3.	(a)	 Attempt any one. (i) Define the internal direct product of H₁, H₂,, H_n. Prove that the internal
	(c)	 Answer very briefly. (i) True/False : U(7) is isomorphic to U(9). (ii) Find the last two digits of 99⁹⁹. (iii) Prove that (R, +) is not isomorphic to (Q, +).
		 (ii) Find the number of element of order 10 in Z₂₅ ⊕ Z₁₀₀. (iii) Give an example of a group G with a proper subgroup H such that G and H are isomorphic.
	(b)	Attempt any two : (i) Prove that $Inn(D_6)$ is isomorphic to D_3 .
2.	(a)	 Attempt any one. (i) State and prove G/Z theorem. (ii) Let G be a finite abelian group and let p be a prime that divides the order of G, then prove that G has an element of order p.
		(iii) If $ G = 8$, then prove that there is an element $a \neq e$ such that $a^2 = e$.
		(i) Prove or disprove : Aut(Z_{25}) is cyclic.
	(c)	Answer very briefly. (i) How many elements of order 5 are in S^{-2}
		 (ii) Prove that the mapping from U(16) to itself given by x → x³ is an automorphism. (iii) Let G be a group and H be a subgroup of G. Let a ∈ G. Prove that aH = H if and only if a ∈ H.
	(b)	 Attempt any two. (i) Show that a function from a finite set S to itself is one-one if and only if it is onto. Is this true when S infinite ?
1.	(a)	 Attempt any one : (i) State and prove Cayley's theorem. (ii) State and prove Orbit-Stabilizer theorem.

1

- (b) Attempt any **two** :
 - (i) Find all abelian groups (upto isomorphism) of order 72.
 - (ii) Prove or disprove : If G is a group, then $H = \{g^2/g \in G\}$ is a subgroup of G.
 - (iii) What is the smallest positive integer n such that there are exactly 4 nonisomorphic Abelian groups of order n ?
- (c) Answer very briefly.
 - (i) Let $G = D_8$, find a homomorphism from G to the group $G' = \{-1, 1\}$ with multiplication.
 - (ii) If f is a homomorphism from group G to group G', prove that the order of f(g) divides the order of g.
 - (iii) State (only) First Isomorphism Theorem.
- 4. (a) Attempt any **one**.
 - (i) If H is subgroup of finite group of G and |H| is a power of p, then prove that H is contained in some Sylow p-subgroup of G.
 - (ii) Let G be a finite group and let $a \in G$. Then show that Cl(a) = |G : C(a)|. Use it to show that $|G| = \sum |G : C(a)|$ where the sum runs over one element from each conjugacy class of G.
 - (b) Attempt any **two** :
 - (i) Prove that a unique Sylow p-subgroup is normal.
 - (ii) Show that $Cl(a) = \{a\}$ if and only if $a \in Z(G)$.
 - (iii) How many non-isomorphic groups of order 35 are possible ? Justify.
 - (c) Answer very briefly.
 - (i) If order of G is 21, find all Sylow 7-subgroups of G.
 - (ii) True/False : The group of order 169 is abelian.
 - (iii) Define the term: Conjugate subgroup.

5. (a) Attempt any **one**.

- (i) State Index theorem and Embedding theorem. Prove anyone of the two theorems.
- (ii) Define Simple group. Prove that A_5 is simple.
- (b) Attempt any **two.**
 - (i) Does there exist a simple group of order 100 ?
 - (ii) Prove or disprove : If the order of group G is *pqr* where *p*, *q*, *r* are distinct primes then G can not be simple.
 - (iii) Show that A_5 cannot have a subgroup of order 30.
- (c) Answer very briefly.
 - (i) State (only) Burnside theorem.
 - (ii) If the order of group G is 43, then prove that G is simple.
 - (iii) Determine the number of ways in which the four corners of a square can be coloured with two colours. (you can use a single colour on all four corners.)

4

3

7

4

3

7

4

3