\qquad

11C-129

May-2015
M.Sc. Sem.-II

408 : Mathematics

(Algebra-I)
Time : 3 Hours]
[Max. Marks : 70

1. (a) Attempt any one :
(i) State and prove Cayley's theorem.
(ii) State and prove Orbit-Stabilizer theorem.
(b) Attempt any two.
(i) Show that a function from a finite set S to itself is one-one if and only if it is onto. Is this true when S infinite?
(ii) Prove that the the mapping from $\mathrm{U}(16)$ to itself given by $x \rightarrow x^{3}$ is an automorphism.
(iii) Let G be a group and H be a subgroup of G . Let $\mathrm{a} \in \mathrm{G}$. Prove that $\mathrm{aH}=\mathrm{H}$ if and only if $\mathrm{a} \in \mathrm{H}$.
(c) Answer very briefly.
(i) How many elements of order 5 are in S_{7} ?
(ii) Prove or disprove : $\operatorname{Aut}\left(\mathrm{Z}_{25}\right)$ is cyclic.
(iii) If $|G|=8$, then prove that there is an element $a \neq e$ such that $a^{2}=e$.
2. (a) Attempt any one.
(i) State and prove G/Z theorem.
(ii) Let G be a finite abelian group and let p be a prime that divides the order of G , then prove that G has an element of order p .
(b) Attempt any two :
(i) Prove that $\operatorname{Inn}\left(D_{6}\right)$ is isomorphic to D_{3}.
(ii) Find the number of element of order 10 in $\mathrm{Z}_{25} \oplus \mathrm{Z}_{100}$.
(iii) Give an example of a group G with a proper subgroup H such that G and H are isomorphic.
(c) Answer very briefly.
(i) True/False : $\mathrm{U}(7)$ is isomorphic to $\mathrm{U}(9)$.
(ii) Find the last two digits of 99^{99}.
(iii) Prove that $(\mathrm{R},+)$ is not isomorphic to $(\mathrm{Q},+)$.
3. (a) Attempt any one.
(i) Define the internal direct product of $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{n}}$. Prove that the internal direct product is isomorphic to external direct product.
(ii) State (only) Fundamental theorem of finite Abelian group. Find the isomorphism class of $U(24)$.
(b) Attempt any two :
(i) Find all abelian groups (upto isomorphism) of order 72.
(ii) Prove or disprove : If G is a group, then $\mathrm{H}=\left\{\mathrm{g}^{2} / \mathrm{g} \in \mathrm{G}\right\}$ is a subgroup of G .
(iii) What is the smallest positive integer n such that there are exactly 4 nonisomorphic Abelian groups of order n ?
(c) Answer very briefly.
(i) Let $G=D_{8}$, find a homomorphism from G to the group $G^{\prime}=\{-1,1\}$ with multiplication.
(ii) If f is a homomorphism from group G to group G^{\prime}, prove that the order of $\mathrm{f}(\mathrm{g})$ divides the order of g .
(iii) State (only) First Isomorphism Theorem.
4. (a) Attempt any one.
(i) If H is subgroup of finite group of G and $\mathrm{IH\mid}$ is a power of p , then prove that H is contained in some Sylow p-subgroup of G .
(ii) Let G be a finite group and let $\mathrm{a} \in \mathrm{G}$. Then show that $\mathrm{Cl}(\mathrm{a})=|\mathrm{G}: \mathrm{C}(\mathrm{a})|$. Use it to show that $|\mathrm{G}|=\sum|\mathrm{G}: \mathrm{C}(\mathrm{a})|$ where the sum runs over one element from each conjugacy class of G.
(b) Attempt any two :
(i) Prove that a unique Sylow p-subgroup is normal.
(ii) Show that $\mathrm{Cl}(\mathrm{a})=\{\mathrm{a}\}$ if and only if $\mathrm{a} \in \mathrm{Z}(\mathrm{G})$.
(iii) How many non-isomorphic groups of order 35 are possible ? Justify.
(c) Answer very briefly.
(i) If order of G is 21, find all Sylow 7-subgroups of G.
(ii) True/False : The group of order 169 is abelian.
(iii) Define the term: Conjugate subgroup.
5. (a) Attempt any one. 7
(i) State Index theorem and Embedding theorem. Prove anyone of the two theorems.
(ii) Define Simple group. Prove that A_{5} is simple.
(b) Attempt any two.
(i) Does there exist a simple group of order 100 ?
(ii) Prove or disprove : If the order of group G is $p q r$ where p, q, r are distinct primes then G can not be simple.
(iii) Show that A_{5} cannot have a subgroup of order 30.
(c) Answer very briefly.
(i) State (only) Burnside theorem.
(ii) If the order of group G is 43 , then prove that G is simple.
(iii) Determine the number of ways in which the four corners of a square can be coloured with two colours. (you can use a single colour on all four corners.)
