\qquad

18I-101

May-2015
M.Sc., Sem.-II

411 : Mathematics
 (Real Analysis)

Time : 3 Hours]

[Max. Marks : 70

1. (A) Attempt any one.
(1) If the sequence of measurable functions $\mathrm{f}_{\mathrm{n}}(x)$ converges to $\mathrm{f}(x)$ almost everywhere on a bounded measurable set E, then prove that $f_{n} \Rightarrow f$.
(2) State and prove Riesz theorem.
(B) Attempt any two.
(1) Verify Egorov's theorem for the sequence $\mathrm{f}_{\mathrm{n}}:[0,1] \rightarrow \mathrm{R}$ defined by $\mathrm{f}_{\mathrm{n}}(x)=$ $2 x^{\mathrm{n}}+1$.
(2) If $\mathrm{f}_{\mathrm{n}} \Rightarrow \mathrm{f}$ and $\mathrm{g}_{\mathrm{n}} \Rightarrow \mathrm{g}$, then show that $\mathrm{f}_{\mathrm{n}}+\mathrm{g}_{\mathrm{n}} \Rightarrow \mathrm{f}+\mathrm{g}$.
(3) State (only) Luzin's theorem.
(C) Answer in brief.
(1) True or False : If $f_{n} \Rightarrow f$, then every subsequence of $\left\{f_{n}\right\}$ converges in measure to f.
(2) If $f_{n} \Rightarrow f$ and $f_{n} \Rightarrow g$, then show that $f=g$ almost everywhere.
(3) Define : Convergence in measure.
2. (A) Attempt any one.
(1) Define Bernstein polynomial. If $\mathrm{f}(x)$ is a continuous function on $[0,1]$, then prove that the sequence of its Bernstein polynomials converges uniformly to f on $[0,1]$.
(2) Prove that $\mathrm{L}_{\mathrm{p}}[\mathrm{a}, \mathrm{b}]$ is complete.
(B) Attempt any two.
(1) If $f, g \in L_{p}[a, b]$, then show that $f+g \in L_{p}[a, b]$.
(2) Show that the set of bounded measurable functions is dense in $L_{p}[a, b]$.
(3) State (only) Holder's inequality for functions as well as numbers.
(C) Answer in brief.
(1) Express $\cos ^{2} x$ in the form of a trigonometric polynomial.
(2) If $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ in $\mathrm{L}_{\mathrm{p}}[\mathrm{a}, \mathrm{b}]$, then show that $\left\|\mathrm{f}_{\mathrm{n}}\right\|_{\mathrm{p}} \rightarrow\|\mathrm{f}\|_{\mathrm{p}}$.
(3) True or False : $\mathrm{L}_{\mathrm{p}}[\mathrm{a}, \mathrm{b}] \subset \mathrm{L}_{1}[\mathrm{a}, \mathrm{b}]$ for all $\mathrm{p}>1$.
3. (A) Attempt any one.

7
(1) Show that if $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is of finite variation and continuous at x_{0}, then the function $\pi(x)=\mathrm{V}_{\mathrm{a}}^{x}(\mathrm{f})$ is continuous at x_{0}.
(2) If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is increasing, then show that its derivative $\mathrm{f}^{\prime}(x)$ is measurable and $\int_{a}^{b} \mathrm{f}^{\prime}(x) \mathrm{d} x \leq \mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})$.
(B) Attempt any two.
(1) Let $\mathrm{f}(x)=x \sin (1 / x)$ for $(x \neq 0)$ and $\mathrm{f}(0)=0$. Then compute any three derived numbers of f at 0 .
(2) If $\mathrm{f}(x)=\tan x$, then compute the total variation of f on $[0, \pi / 4]$.
(3) If f is of finite variation on R , then show that $\lim _{x \rightarrow \infty} \mathrm{~V}_{x}^{\infty}(\mathrm{f})=0$.
(C) Answer in brief:
(1) Give the definition of saltus function.
(2) How do we define the total variation of a real-valued function defined on R ?
(3) True or False : Every function of finite variation on $[a, b]$ is continuous.
4. (A) Attempt any one.
(1) If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is such that $\mathrm{f}^{\prime}(x)$ is finite everywhere and summable on $[\mathrm{a}, \mathrm{b}]$, then prove that

$$
\mathrm{f}(\mathrm{c})=\mathrm{f}(\mathrm{a})+\int_{\mathrm{a}}^{\mathrm{c}} \mathrm{f}^{\prime}(\mathrm{t}) \mathrm{dt}, \mathrm{a}<\mathrm{c} \leq \mathrm{b} .
$$

(2) Let $\mathrm{f}(x)=x^{2} \cos \left(\pi / x^{2}\right)$ and $\mathrm{g}(x)=x^{3 / 2} \sin (1 / x)$ for $(x \neq 0)$ and $\mathrm{f}(0)=\mathrm{g}(0)=0$. Show that f is not Lebesgue integrable on $[0,1]$ but g is Lebesgue integrable on [0, 1].
(B) Attempt any two.
(1) Let f be summable on $[\mathrm{a}, \mathrm{b}]$ and $\phi(x)=\int_{\mathrm{a}}^{x} \mathrm{f}(\mathrm{t})$ dt. If f is continuous at x_{0}, then show that $\phi^{\prime}\left(x_{0}\right)=\mathrm{f}\left(x_{0}\right)$.
(2) Show that every Lipschitz continuous function on [a, b] is absolutely continuous.
(3) Prove that $\mathrm{f}(x)=x^{2}+|x|$ is absolutely continuous on $[-1,1]$.
(C) Answer in brief.
(1) True or False : Every continuously differentiable function on [a, b] is absolutely continuous function.
(2) State Vitali's covering lemma.
(3) Explain what we mean by a Lebesgue point of a summable function.
5. (A) Attempt any one.
(1) For $\mathrm{f} \in \mathrm{L}_{2}[-\pi, \pi]$, if $\mathrm{S}_{\mathrm{N}}(x)$ denotes the partial sums of the Fourier series of f , then show that $\left\|f-T_{N}\right\|_{2} \geq\left\|f-S_{N}\right\|_{2}$, for every trigonometric polynomial T_{N} of degree N .
(2) Determine the Fourier series of the 2π periodic function
$\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}0 & -\pi \leq \mathrm{t} \leq 0 \\ 1 & 0<\mathrm{t}<\pi .\end{array}\right.$
Deduce from it the value of the infinite sum $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}$.
(B) Attempt any two.
(1) State and prove Riemann-Lebesgue lemma.
(2) Show that if the series $\sum \mathrm{c}_{\mathrm{n}}$ is cesaro-summable and $\mathrm{nc}_{\mathrm{n}} \rightarrow 0$, then $\sum \mathrm{c}_{\mathrm{n}}$ is summable (convergent).
(3) State and prove Bessel's inequality for $f \in L_{2}[-\pi, \pi]$.
(C) Answer in brief :
(1) Define $\mathrm{D}_{\mathrm{N}}(x)$ and determine its value when x is a multiple of 2π.
(2) Show that $\frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{F}_{\mathrm{N}}(x) \mathrm{d} x=1$.
(3) Can we say that the series $\sum_{n=1}^{\infty} \frac{\sin n x}{\sqrt{n}}$ is a Fourier series for some function in $\mathrm{L}_{2}[-\pi, \pi]$? Why?

