Seat No. : _____

18I-101

May-2015

M.Sc., Sem.-II

411 : Mathematics

(Real Analysis)

Time : 3 Hours]

1. (A) Attempt any **one**.

- (1) If the sequence of measurable functions $f_n(x)$ converges to f(x) almost everywhere on a bounded measurable set E, then prove that $f_n \Rightarrow f$.
- (2) State and prove Riesz theorem.
- (B) Attempt any **two**.
 - (1) Verify Egorov's theorem for the sequence $f_n : [0, 1] \rightarrow R$ defined by $f_n(x) = 2x^n + 1$.
 - (2) If $f_n \Rightarrow f$ and $g_n \Rightarrow g$, then show that $f_n + g_n \Rightarrow f + g$.
 - (3) State (only) Luzin's theorem.

(C) Answer in brief.

- (1) True or False : If $f_n \Rightarrow f$, then every subsequence of $\{f_n\}$ converges in measure to f.
- (2) If $f_n \Rightarrow f$ and $f_n \Rightarrow g$, then show that f = g almost everywhere.
- (3) Define : Convergence in measure.

2. (A) Attempt any **one**.

- (1) Define Bernstein polynomial. If f(x) is a continuous function on [0, 1], then prove that the sequence of its Bernstein polynomials converges uniformly to f on [0, 1].
- (2) Prove that $L_p[a, b]$ is complete.

18I-101

Р.Т.О.

[Max. Marks : 70

4

7

7

- (B) Attempt any **two**.
 - (1) If f, $g \in L_p[a, b]$, then show that $f + g \in L_p[a, b]$.
 - (2) Show that the set of bounded measurable functions is dense in $L_p[a, b]$.
 - (3) State (only) Holder's inequality for functions as well as numbers.
- (C) Answer in brief.
 - (1) Express $\cos^2 x$ in the form of a trigonometric polynomial.
 - (2) If $f_n \to f$ in $L_p[a, b]$, then show that $|| f_n ||_p \to || f ||_p$.
 - (3) True or False : $L_p[a, b] \subset L_1[a, b]$ for all p > 1.

3. (A) Attempt any **one**.

- (1) Show that if $f : [a, b] \to R$ is of finite variation and continuous at x_0 , then the function $\pi(x) = V_a^x(f)$ is continuous at x_0 .
- (2) If $f : [a, b] \to R$ is increasing, then show that its derivative f'(x) is measurable and $\int_{a}^{b} f'(x) dx \le f(b) f(a)$.
- (B) Attempt any **two**.
 - (1) Let $f(x) = x \sin(1/x)$ for $(x \neq 0)$ and f(0) = 0. Then compute any three derived numbers of f at 0.
 - (2) If $f(x) = \tan x$, then compute the total variation of f on $[0, \pi/4]$.
 - (3) If f is of finite variation on R, then show that $\lim_{x \to \infty} V_x^{\infty}(f) = 0$.

(C) Answer in brief :

- (1) Give the definition of saltus function.
- (2) How do we define the total variation of a real-valued function defined on R ?
- (3) True or False : Every function of finite variation on [a, b] is continuous.

18I-101

3

7

4

- 4. (A) Attempt any **one**.
 - (1) If $f : [a, b] \to R$ is such that f'(x) is finite everywhere and summable on [a, b], then prove that

$$f(c) = f(a) + \int_{a}^{c} f'(t)dt, a < c \le b.$$

- (2) Let $f(x) = x^2 \cos(\pi/x^2)$ and $g(x) = x^{3/2} \sin(1/x)$ for $(x \neq 0)$ and f(0) = g(0) = 0. Show that f is not Lebesgue integrable on [0, 1] but g is Lebesgue integrable on [0, 1].
- (B) Attempt any **two**.

(1) Let f be summable on [a, b] and $\phi(x) = \int_{a}^{b} f(t) dt$. If f is continuous at x_0 , then show that $\phi'(x_0) = f(x_0)$.

- (2) Show that every Lipschitz continuous function on [a, b] is absolutely continuous.
- (3) Prove that $f(x) = x^2 + |x|$ is absolutely continuous on [-1, 1].
- (C) Answer in brief.
 - (1) True or False : Every continuously differentiable function on [a, b] is absolutely continuous function.
 - (2) State Vitali's covering lemma.
 - (3) Explain what we mean by a Lebesgue point of a summable function.
- 5. (A) Attempt any **one**.
 - (1) For $f \in L_2[-\pi, \pi]$, if $S_N(x)$ denotes the partial sums of the Fourier series of f, then show that $\|f T_N\|_2 \ge \|f S_N\|_2$, for every trigonometric polynomial T_N of degree N.
 - (2) Determine the Fourier series of the 2π periodic function

$$f(t) = \begin{cases} 0 & -\pi \le t \le 0 \\ 1 & 0 < t < \pi. \end{cases}$$

Deduce from it the value of the infinite sum $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}$.

18I-101

3

4

- (B) Attempt any **two**.
 - (1) State and prove Riemann-Lebesgue lemma.
 - (2) Show that if the series $\sum c_n$ is cesaro-summable and $nc_n \to 0$, then $\sum c_n$ is summable (convergent).
 - (3) State and prove Bessel's inequality for $f \in L_2[-\pi, \pi]$.

(C) Answer in brief :

(1) Define $D_N(x)$ and determine its value when x is a multiple of 2π .

(2) Show that
$$\frac{1}{\pi} \int_{-\pi}^{\pi} F_{N}(x) dx = 1.$$

(3) Can we say that the series $\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n}}$ is a Fourier series for some function in $L_2[-\pi, \pi]$? Why?

18I-101