\qquad

15G-105

May-2015

M.Sc., Sem.-II

410 : Mathematics
 (Partial Differential Equations)

Time : 3 Hours]
[Max. Marks : 70

1. (a) Attempt any one.
(i) Find the general integral of $\left(x^{2}+3 y^{2}+3 z^{2}\right) \mathrm{p}-2 x y \mathrm{q}+2 x \mathrm{z}=0$.
(ii) Verify that the Pfaffian differential equation

$$
(6 x+y z) \mathrm{d} x+(x z-2 y) \mathrm{d} y+(x y+2 z) \mathrm{d} z=0
$$

is integrable and find its integral.
(b) Attempt any two.
(i) If \vec{X}. curl $\vec{X}=0$ where $\vec{X}=(P, Q, R)$ and μ is an arbitrary differentiable function of x, y and z, prove that $\mu \overrightarrow{\mathrm{X}} \cdot \operatorname{curl}(\mu \overrightarrow{\mathrm{X}})=0$.
(ii) Solve : yzd $x+x z d y+x y d z=0$.
(iii) Show that the equations

$$
\mathrm{p}^{2}+\mathrm{q}^{2}-1=0,\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) x-\mathrm{pz}=0
$$

are compatible and find the one parameter family of common solutions.
(c) Answer very briefly.
(i) Form a partial differential equation by eliminating the arbitrary function F from $\mathrm{F}\left(\mathrm{z}-x \mathrm{y}, x^{2}+\mathrm{y}^{2}\right)=0$.
(ii) Find the envelope of $(x-a)^{2}+(y-2 a)^{2}+z^{2}=1$.
(iii) What is the integral of $\mathrm{yd} x+x \mathrm{dy}+2 \mathrm{zdz}=0$?
2. (a) Attempt any one.
(i) Find a complete integrals of $x^{2} p^{2}+y^{2} q^{2}-4=0$ by Charpit's method.
(ii) Find the integral surface of the differential equation

$$
\mathrm{p}^{2} x+\mathrm{pqy}-2 \mathrm{pz}-x=0,
$$

passing through the line $y=1, x=z$.
(b) Attempt any two.
(i) By Jacobi's method, solve the equation $x \mathrm{u}_{x}+\mathrm{yu}_{\mathrm{y}}-\mathrm{u}_{\mathrm{z}}^{2}=0$.
(ii) Solve $\mathrm{z}_{x}+\mathrm{z}_{\mathrm{y}}=\mathrm{z}^{2}$ with the initial condition $\mathrm{z}(x, 0)=\mathrm{f}(x)$.
(iii) Find a complete integral of the equation $\mathrm{p}^{2}=\mathrm{qz}$.
(c) Answer very briefly.
(i) Define complete integral of the p.d.e. $\mathrm{f}\left(x, \mathrm{y}, \mathrm{z}, \mathrm{u}_{x}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)=0$.
(ii) What is a complete integral of the equation $\mathrm{z}=\mathrm{p} x+\mathrm{qy}+\mathrm{p}-\mathrm{q}$?
(iii) What is a complete integral of the equation $\mathrm{p}+\mathrm{q}=\mathrm{pq}$?
3. (a) Attempt any one.
(i) Reduce the equation $u_{x x}-y^{4} u_{y y}=2 y^{3} u_{y}$ to a canonical form and solve it.
(ii) Solve the one-dimensional wave equation
$\mathrm{y}_{x x}=\frac{1}{\mathrm{c}^{2}} \mathrm{y}_{\mathrm{tt}},-\infty<x<\infty, \mathrm{t}>0$
with the initial conditions
$\mathrm{y}(x, 0)=\mathrm{f}(x), \mathrm{y}_{\mathrm{t}}(x, 0)=\mathrm{g}(x),-\infty<x<\infty$
where $\mathrm{f} \in \mathrm{C}^{2}$ and $\mathrm{g} \in \mathrm{C}^{1}$.
(b) Attempt any two.

4
(i) Find the characteristic strips of the equation $z+p x+q y=1+p q x^{2} y^{2}$ passing through the initial data curve $\mathrm{C}: x_{0}=\mathrm{s}, \mathrm{y}_{0}=1, \mathrm{z}_{0}=-\mathrm{s}$.
(ii) Classify the equation $x \mathrm{u}_{x x}+2 \sqrt{x y} \mathrm{u}_{x y}+\mathrm{yu}_{\mathrm{yy}}=\mathrm{u}_{x}$.
(iii) How many possible solutions of the equation $z=p^{2}-q^{2}$ which passes through the curve $\mathrm{C}: x_{0}=\mathrm{s}, \mathrm{y}_{0}=0, \mathrm{z}_{0}=-\frac{1}{4} \mathrm{~s}^{2} ?$ Justify.
(c) Answer very briefly.
(i) Of which type is the equation $\mathrm{u}_{x x}+2 \mathrm{u}_{x y}+17 \mathrm{u}_{\mathrm{yy}}=0$?
(ii) What is the canonical form of the elliptic type second order semi-linear p.d.e.?
(iii) Give an example of a second order semi-linear p.d.e. which is of the parabolic type.
4. (a) Attempt any one.
(i) Suppose that $\mathrm{u}(x, \mathrm{y})$ is harmonic in a bounded domain D and continuous in $\bar{D}=\mathrm{D} \cup \mathrm{B}$. Prove that u attains its maximum on the boundary B of D .
(ii) Prove that the solution for the Dirichlet problem for a circle of radius a is given by the Poisson integral formula.
(b) Attempt any two.
(i) Prove that the solution of the Dirichlet problem, if it exists, in unique.
(ii) State the Dirichlet problem for a rectangle.
(iii) Show that the solution of the Dirichlet problem is stable.
(c) Answer very briefly.
(i) State the Dirichlet problem for the upper half plane.
(ii) What is a Cauchy problem?
(iii) What are the Hadamard's conditions for a well posed problem?
5. (a) Attempt any one.
(i) Solve the following problem :
$\mathrm{u}_{\mathrm{t}}=\mathrm{ku}_{x x}$,
$0<x<l, \mathrm{t}>0$,
$\mathrm{u}(0, \mathrm{t})=\mathrm{u}(l, \mathrm{t})=0$,
$\mathrm{t}>0$,
$\mathrm{u}(x, 0)=\mathrm{f}(x)$,
$0 \leq x \leq l$.
(ii) State and prove Harnack's theorem.
(b) Attempt any two.
(i) State the heat conduction problem for a infinite rod.
(ii) Show that the surface $x^{2}+y^{2}+z^{2}=c$, $c>0$, can form an equipotential family of surfaces.
(iii) Let D be a bounded domain in \mathbb{R}^{2}, bounded by a smooth closed curve B . Let $\left\{u_{n}\right\}$ be a sequence of functions each of which is continuous on $\overline{\mathrm{D}}=\mathrm{D} \cup \mathrm{B}$ and harmonic in D . If $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ converges uniformly on B, prove that $\left\{u_{n}\right\}$ converge uniformly on $\overline{\mathrm{D}}$.
(c) Answer very briefly.
(i) State the Neumann problem for the upper half plane.
(ii) State the Neumann problem for a circle of radius a.
(iii) Show that $\phi=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ satisfies the three-dimensional Laplace's equation in any domain that does not contain the origin.

