Seat No. : _____

15G-105

May-2015

M.Sc., Sem.-II

410 : Mathematics (Partial Differential Equations)

Time : 3 Hours]

[Max. Marks: 70

7

4

3

7

1. (a) Attempt any **one**.

- (i) Find the general integral of $(x^2 + 3y^2 + 3z^2)p 2xyq + 2xz = 0$.
- (ii) Verify that the Pfaffian differential equation (6x + yz) dx + (xz - 2y)dy + (xy + 2z)dz = 0

is integrable and find its integral.

- (b) Attempt any **two**.
 - (i) If \vec{X} . curl $\vec{X} = 0$ where $\vec{X} = (P, Q, R)$ and μ is an arbitrary differentiable function of *x*, *y* and *z*, prove that $\mu \vec{X}$.curl $(\mu \vec{X}) = 0$.
 - (ii) Solve : yzdx + xzdy + xydz = 0.
 - (iii) Show that the equations

$$p^2 + q^2 - 1 = 0$$
, $(p^2 + q^2)x - pz = 0$

are compatible and find the one parameter family of common solutions.

(c) Answer very briefly.

- (i) Form a partial differential equation by eliminating the arbitrary function F from $F(z xy, x^2 + y^2) = 0$.
- (ii) Find the envelope of $(x a)^2 + (y 2a)^2 + z^2 = 1$.
- (iii) What is the integral of ydx + xdy + 2zdz = 0?

2. (a) Attempt any **one**.

- (i) Find a complete integrals of $x^2p^2 + y^2q^2 4 = 0$ by Charpit's method.
- (ii) Find the integral surface of the differential equation

 $p^2x + pqy - 2pz - x = 0,$

passing through the line y = 1, x = z.

15G-105

P.T.O.

- (b) Attempt any **two**.
 - (i) By Jacobi's method, solve the equation $xu_x + yu_y u_z^2 = 0$.
 - (ii) Solve $z_x + z_y = z^2$ with the initial condition z(x, 0) = f(x).
 - (iii) Find a complete integral of the equation $p^2 = qz$.
- (c) Answer very briefly.
 - (i) Define complete integral of the p.d.e. $f(x, y, z, u_x, u_y, u_z) = 0$.
 - (ii) What is a complete integral of the equation z = px + qy + p q?
 - (iii) What is a complete integral of the equation p + q = pq?

3. (a) Attempt any **one**.

- (i) Reduce the equation $u_{xx} y^4 u_{yy} = 2y^3 u_y$ to a canonical form and solve it.
- (ii) Solve the one-dimensional wave equation

$$y_{xx} = \frac{1}{c^2} y_{tt}, -\infty < x < \infty, t > 0$$

with the initial conditions

$$\begin{aligned} \mathbf{y}(x,\,\mathbf{0}) &= \mathbf{f}(x),\, \mathbf{y}_{\mathsf{t}}(x,\,\mathbf{0}) = \mathbf{g}(x), -\infty < x < \infty \end{aligned}$$
 where $\mathbf{f} \in \mathbf{C}^2$ and $\mathbf{g} \in \mathbf{C}^1.$

- (b) Attempt any **two**.
 - (i) Find the characteristic strips of the equation $z + px + qy = 1 + pqx^2y^2$ passing through the initial data curve $C : x_0 = s, y_0 = 1, z_0 = -s$.
 - (ii) Classify the equation $xu_{xx} + 2\sqrt{xy}u_{xy} + yu_{yy} = u_x$.
 - (iii) How many possible solutions of the equation $z = p^2 q^2$ which passes through the curve C : $x_0 = s$, $y_0 = 0$, $z_0 = -\frac{1}{4}s^2$? Justify.
- (c) Answer very briefly.
 - (i) Of which type is the equation $u_{xx} + 2u_{xy} + 17u_{yy} = 0$?
 - (ii) What is the canonical form of the elliptic type second order semi-linear p.d.e. ?
 - (iii) Give an example of a second order semi-linear p.d.e. which is of the parabolic type.

15G-105

4

3

7

4

3

- 4. (a) Attempt any **one**.
 - (i) Suppose that u(x, y) is harmonic in a bounded domain D and continuous in $\overline{D} = D \cup B$. Prove that u attains its maximum on the boundary B of D.
 - (ii) Prove that the solution for the Dirichlet problem for a circle of radius a is given by the Poisson integral formula.
 - (b) Attempt any **two**.
 - (i) Prove that the solution of the Dirichlet problem, if it exists, in unique.
 - (ii) State the Dirichlet problem for a rectangle.
 - (iii) Show that the solution of the Dirichlet problem is stable.
 - (c) Answer very briefly.
 - (i) State the Dirichlet problem for the upper half plane.
 - (ii) What is a Cauchy problem ?
 - (iii) What are the Hadamard's conditions for a well posed problem ?

5. (a) Attempt any **one**.

- (i) Solve the following problem :
 - $$\begin{split} & u_t = k u_{xx}, & 0 < x < l, t > 0, \\ & u(0, t) = u(l, t) = 0, & t > 0, \\ & u(x, 0) = f(x), & 0 \le x \le l. \end{split}$$
- (ii) State and prove Harnack's theorem.
- (b) Attempt any **two**.
 - (i) State the heat conduction problem for a infinite rod.
 - (ii) Show that the surface $x^2 + y^2 + z^2 = c$, c > 0, can form an equipotential family of surfaces.
 - (iii) Let D be a bounded domain in \mathbb{R}^2 , bounded by a smooth closed curve B. Let $\{u_n\}$ be a sequence of functions each of which is continuous on $\overline{D} = D \cup B$ and harmonic in D. If $\{u_n\}$ converges uniformly on B, prove that $\{u_n\}$ converge uniformly on \overline{D} .

3

15G-105

4

3

7

4

- (c) Answer very briefly.
 - (i) State the Neumann problem for the upper half plane.
 - (ii) State the Neumann problem for a circle of radius a.
 - (iii) Show that $\phi = (x^2 + y^2 + z^2)^{-1/2}$ satisfies the three-dimensional Laplace's equation in any domain that does not contain the origin.

4

15G-105