Seat No. : \qquad

BG-119

May-2015
M.Sc., Sem.-II

407 : Mathematics
(Differential Geometry - I)

Time : 3 Hours]

[Max. Marks : 70

1. (A) For the logarithmic spiral

$$
\mathrm{r}(\mathrm{t})=\left(\mathrm{e}^{\mathrm{t}} \cos (\mathrm{t}), \mathrm{e}^{\mathrm{t}} \sin (\mathrm{t})\right),
$$

calculate the arc-length of r starting at $r(0)=(1,0)$.
Show that the angle between $r(t)$ and the tangent vector at $r(t)$ is independent of t.

OR

(i) Calculate the arc-length of the catenary $\mathrm{r}(\mathrm{t})=(\mathrm{t}, \cosh (\mathrm{t}))$ starting at the point $(0,1)$.
(ii) Show that the curve $\mathrm{r}(\mathrm{t})=\left(\frac{1}{3}(1-\mathrm{t})^{3 / 2}, \frac{-1}{3}(1+\mathrm{t})^{3 / 2}, \frac{\mathrm{t}}{\sqrt{2}}\right)$ is a unit-speed curve.
(B) Answer any two :
(i) Find a Cartesian equation of the curve $r(t)=\left(e^{t}, t^{4}\right)$.
(ii) Give a parametrization $r(t)$ for the circle $x^{2}+y^{2}=1$, such that $r(0)=(0,1)$.
(iii) Consider the twisted cubic $r(t)=\left(t, t^{2}, t^{3}\right)$. Show that the arc-length of this curve between the points $(0,0,0)$ and $(1,1,1)$ is less than 4 .
(C) Answer all :
(i) Parametrize the level curve $x+y=1$.
(ii) Parametrize the line in \mathbb{R}^{3} given by $\left\{\begin{array}{l}x+y+z=1 \\ x+y-z=1\end{array}\right.$.
(iii) Consider $\mathrm{r}(\mathrm{t})=\left(\cos ^{2}(\mathrm{t}), \sin ^{2}(\mathrm{t})\right), 0<\mathrm{t}<\frac{\pi}{4}$. Is r a regular curve ?
2. (A) Compute the curvature, the torsion, the vectors $\mathrm{t}, \mathrm{n}, \mathrm{b}$ and verify the Frenet-Serret equations for the curve
$\mathrm{r}(\mathrm{t})=\left(\frac{12}{13} \sin (\mathrm{t}), 1+\cos (\mathrm{t}), \frac{5}{13} \sin (\mathrm{t})\right)$.

OR

$\mathrm{r}(\mathrm{t})$ is a regular curve with nowhere vanishing curvature such that $\mathrm{r}(0)=(0,0,0)$, $r(1)=(1,0,0), r(2)=(0,1,0), r(3)=(0,0,1)$. Show that there is a point of r at which the torsion is not zero.
(B) Answer any two :
(i) $\quad r(t)=(\cos (t),-\sin (t)),-\pi<t<\pi$. Find the signed curvature of r at $(1,0)$.
(ii) Suppose that $\mathrm{r}(\mathrm{s})$ and $\delta(\mathrm{s})$ are two unit-speed curves in \mathbb{R}^{2} with the same signed curvature at corresponding points. How are the two curves related?
(iii) Consider $\mathrm{r}(\mathrm{t})=\left(\frac{1+\mathrm{t}^{2}}{\mathrm{t}}, \frac{1-\mathrm{t}^{2}}{\mathrm{t}}, \frac{1}{\mathrm{t}}\right), \mathrm{t}>0$. Show that r is planar.
(C) Answer all :
(i) Let $\mathrm{r}(\mathrm{t})$ be a regular curve in \mathbb{R}^{3}. Write down (without proof) a formula for its curvature.
(ii) Let $\mathrm{r}(\mathrm{t})$ be a regular curve in \mathbb{R}^{3} with nowhere vanishing curvature. Write down (without proof) a formula for its torsion.
(iii) Calculate the curvature of $\mathrm{r}(\mathrm{t})=\left(\mathrm{t}, \mathrm{t}^{2}, \mathrm{t}^{3}\right)$ at $(0,0,0)$.
3. (A) Show that the level surface $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{2^{2}}-\frac{z^{2}}{3^{2}}=1$ is a smooth surface.

OR
Show that the set $\mathrm{S}=\left\{(x, \mathrm{y}, \mathrm{z}) \mid \mathrm{z}=x^{2}+\mathrm{y}^{3}\right\}$ is a smooth surface with atlas consisting of the single regular surface patch $\sigma(u, v)=\left(u, v, u^{2}+v^{3}\right)$.
(B) Answer any two :
(i) A surface patch is given by $\sigma(u, v)=\left(u, v, 2 u^{2}-3 v^{2}\right)$. Find a basis for the tangent plane at $(1,1,-1)$.
(ii) Find a unit normal vector to the surface patch $\sigma(u, v)=\left(u, v, 2 u^{2}+3 v^{2}\right)$ at $(0,0,0)$.
(iii) Is the vector $(1,2,3)$ a tangent vector to the unit sphere at $(0,0,1)$?
(C) Answer all :
(i) Give a parametrization of a helicoid. (Do not prove)
(ii) Give a parametrization of the plane $2 x+3 y-z=0$. (Do not prove)
(iii) Give a parametrization of the hyperbolic paraboloid $\mathrm{z}=x^{2}-2 \mathrm{y}^{2}$. (Do not prove)
4. (A) Describe the quadric $x^{2}+2 y^{2}+8 x-4 y+3 z=0$.

OR

Consider the curve $r(u)=(\cos (u), 0, \sin (u)), \frac{-\pi}{2}<u<\frac{\pi}{2}$. This curve is rotated about the z -axis. Give a parametrization for the surface of revolution thus obtained. Which surface is this?
(B) Answer any two :
(i) Define a generalized cylinder. Give a parametrization. (Do not prove)
(ii) Define a generalized cone. Give a parametrization. (Do not prove)
(iii) Define a ruled surface. Give a parametrization. (Do not prove)
(C) Answer all :
(i) Define a triply orthogonal system of surfaces.
(ii) Give an example of a triply orthogonal system of surfaces, where each surface of the system is a plane.
(iii) Find the eigen values of the 3×3 matrix $\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 5\end{array}\right]$.
5. (A) Calculate the first fundamental forms of the following surfaces :
(i) $\quad \sigma(u, v)=(\sinh (u) \sinh (v), \sinh (u) \cosh (v), \sinh (u))$.
(ii) $\sigma(u, v)=\left(u-v, u+v, u^{2}+v^{2}\right)$.

OR

Calculate the first fundamental forms of the following surfaces :
(i) $\quad \sigma(u, v)=(\cosh (u), \sinh (u), v)$
(ii) $\sigma(u, v)=\left(u, v, u^{2}+v^{2}\right)$
(B) Answer any two :
(i) Is the map from the circular half-cone $x^{2}+y^{2}=\mathrm{z}^{2}, \mathrm{z}>0$ to the $x \mathrm{y}$-plane, given by $(x, \mathrm{y}, \mathrm{z}) \rightarrow(x, \mathrm{y}, 0)$ an isometry?
(ii) Give an example of a conformal map that is not an isometry.
(iii) Calculate the area of the surface (part of the unit sphere)

$$
\mathrm{S}=\left\{(x, \mathrm{y}, \mathrm{z}) \mid x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1, \mathrm{z}>\frac{1}{2}\right\} .
$$

(C) Answer all :
(i) Define an equiareal map f: $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$.
(ii) Give an isometry of the $x y$-plane to itself, other than the identity map.
(iii) Calculate the area of the plane region

$$
\mathrm{A}=\{(x, \mathrm{y}, \mathrm{z}) \mid x \geq 0, \mathrm{y} \geq 0, x+\mathrm{y} \leq 1, \mathrm{z}=0\}
$$

