\qquad

13E-109

May-2015
M.Sc., Sem.-II

409: Mathematics
(Complex Analysis - II)

Time: 3 Hours]

[Max. Marks : 70

1. (a) Suppose z_{1} is a point inside the circle of convergence $\left|z-z_{0}\right|=R$ of a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$. If $R_{1}=\left|z_{1}-z_{0}\right|$, show that this power series converges uniformly in the closed disk $\left|z-z_{0}\right| \leq R_{1}$. Also show that the above power series represents a continuous function $\mathrm{S}(\mathrm{z})$ at each point inside the circle of convergence $\left|z-z_{0}\right|=R$

OR

Suppose f is analytic on an open disk $\left|z-z_{0}\right|<R_{0}$. Show that $f(z)$ has the series representation.
$\mathrm{f}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}}\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{n}} \quad\left(\left|\mathrm{z}-\mathrm{z}_{0}\right|<\mathrm{R}_{0}\right)$
where $\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{f}^{\mathrm{n}}\left(\mathrm{z}_{0}\right)}{\mathrm{n}!}$.
(b) Answer any two of the following briefly:
(i) Specifying the domains, give two Series Expansions in powers of z for the function $\mathrm{f}(\mathrm{z})=\frac{1}{(\mathrm{z}-2)(1-\mathrm{z})}$.
(ii) Specifying the domains, give two Laurent series Expansions in powers of z for the function $\mathrm{f}(\mathrm{z})=\frac{1}{\mathrm{z}\left(1+\mathrm{z}^{2}\right)}$.
(iii) When do you say that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{zn}=\mathrm{z}$? Show that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{z}_{\mathrm{n}}=\mathrm{z}$ if and only if $\lim _{\mathrm{n} \rightarrow \infty} x_{\mathrm{n}}=x$ and $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{y}_{\mathrm{n}}=\mathrm{y}$.
(c) Answer all of the following very briefly :
(i) Represent $f(z)=1+z^{2}$ in powers of $z-5$.
(ii) Find the Maclaurin Series Expansion of $f(z)=\frac{\mathrm{z}}{\mathrm{z}^{4}+9}$ which is valid in $|\mathrm{z}|<\sqrt{3}$.
(iii) Discuss the phrase : "Circle of Convergence".
2. (a) Describe three types of isolated singular points with an illustration of each type.

Show that an isolated singular point z_{0} of a function f is a pole of order m if and only if $f(z)$ can be written in the form $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}$ where $\phi(z)$ is analytic and non-zero at z_{0}. Also show in this case that $\operatorname{Res}_{\mathrm{z}=\mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\frac{\phi^{(\mathrm{m}-1)}\left(\mathrm{z}_{0}\right)}{(\mathrm{m}-1)!}$.
(b) Answer any two of the following briefly:
(i) Show that $\operatorname{Res}_{\mathrm{z}=\mathrm{i}} \frac{\log \mathrm{z}}{\left(\mathrm{z}^{2}+1\right)^{2}}=\frac{\pi+2 \mathrm{i}}{8}$
(ii) Write the principal parts for the following functions at their isolated singular points, also assert the type of the singularity.
(I) $\frac{\cos z}{z}$
(II) $\frac{1}{(2-\mathrm{z})^{3}}$
(iii) Suppose that $z_{0}=\sqrt{2} e^{i} \frac{\pi}{4}=1+$ i. Find $\underset{z=z_{0}}{\operatorname{Res}} \frac{z}{z^{4}+4}$
(c) Answer all of the following very briefly :
(i) Find $\operatorname{Res}_{z=0} \frac{1}{z^{2}}$.
(ii) Find the value of the integral $\int_{|z|=1} \exp \left(\frac{1}{z^{2}}\right) d z$.
(iii) Describe all the singular points of $\frac{1}{\sin \left(\frac{\pi}{\mathrm{z}}\right)}$. Which of these are isolated singular points and which are not?
3. (a) State and prove Liouville's theorem. Derive, after carefully stating, the Fundamental Theorem of Algebra.

OR

Suppose $f(z)$ is analytic and $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ on $\left|z-z_{0}\right|<\in$. Show that f is constant throughout the neighbourhood.
(b) Answer any two of the following briefly:
(i) Suppose that $\mathrm{f}(\mathrm{z})$ is entire and that the harmonic function $\mathrm{u}(x, \mathrm{y})=\operatorname{Re}[\mathrm{f}(\mathrm{z})]$ has an upper bound; that is $\mathrm{u}(x, \mathrm{y}) \leq \mathrm{u}_{0}$ for all points (x, y) in the $x y$ plane. Show that $\mathrm{u}(x, \mathrm{y})$ must be constant throughout the plane.
(ii) Let $\mathrm{f}(\mathrm{z})=(\mathrm{z}-\mathrm{i})^{2}$ and R be the closed triangular region determined by $0,-1$ and -2 i. Give geometric argument and determine the points on R where the maximum and minimum of $|f(z)|$ occurs.
(iii) Suppose $f(z) \neq 0$ is continuous on a closed region R. Show that $|f(z)|$ has a minimum value m in R which occurs on the boundary of R and never in the interior.
(c) Answer all of the following very briefly :
(i) Is the function $\sin \mathrm{z}, \mathrm{z} \in \mathbb{C}$ a bounded function? Justify.
(ii) What are the maximum and minimum values of $f(z)=|\exp z|$ on the rectangular region R described by $0 \leq x \leq 1,0 \leq \mathrm{y} \leq \pi$? Where are they attained ?
(iii) Is it true that $|f(z)|$ can have its minimum value at an interior point of R ? Justify.
4. (a) State the appropriate assumption of Jordan's lemma. Under these assumptions, show that :
$\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) e^{i a z} d z=0$

OR

Evaluate the integral $\int_{0}^{\infty} \frac{x^{2} \mathrm{~d} x}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}}$ giving all the details.
(b) Answer any two of the following briefly:
(i) Giving the main steps only and using residue theory, show that

$$
\int_{0}^{\infty} \frac{x \sin 2 x}{x^{2}+3} \mathrm{~d} x=\frac{\pi}{2} \exp (-2 \sqrt{3})
$$

(ii) Giving the main steps only and using residue theory, show that

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+2 x+2} \mathrm{~d} x=\frac{\pi}{\mathrm{e}}(\sin 1+\cos 1)
$$

(iii) Giving the main steps only and using residue theory, show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$
(c) Answer all of the following very briefly :
(i) Discuss the Phrase: "Winding Number".
(ii) Calculate $\Delta_{\mathrm{C}} \arg \mathrm{f}(\mathrm{z})$ where C is $|\mathrm{z}|=1$ and $\mathrm{f}(\mathrm{z})=\mathrm{z}^{2}$.
(iii) Define the improper integral $\int_{-\infty}^{\infty} \mathrm{f}(x) \mathrm{d} x$ in two different ways. Show that the two definitions are not equivalent.
5. (a) State the conditions under which $f(z)$ and $f(z)+g(z)$ have the same number of zeros counting multiplicities inside a simple closed contour C. Derive the Fundamental Theorem of Algebra using this result.

OR

Define very carefully Möbius Transformation as a bijection from the extended complex plane onto the extended complex plane. Find explicitly the inverse of a Möbius Transformation and state clearly as to why it is also a Möbius Transformation. Also show that composition of two Möbius Transformations is also a Möbius Transformation.
(b) Answer any two of the following briefly:
(i) Find the linear fractional transformation T which maps $1,0,-1$ onto $\mathrm{i}, \infty, 1$ respectively.
(ii) Find the linear fractional transformation T which maps $-\mathrm{i}, 0$, i onto $-1, \mathrm{i}, 1$ respectively.
(iii) Determine the number of roots (counting multiplicities) of the polynomial equation $z^{5}+3 z^{3}+z^{2}+1=0$ inside the circle $|z|=2$.
(c) Answer all of the following very briefly :
(i) Find the winding number of the image of $|z|=1$ under the map $f(z)=\frac{(2 z-1)^{7}}{z^{3}}$.
(ii) Give an example of Möbius Transformation which has exactly one fixed point.
(iii) What is the winding number of the image of the unit circle under the map $\mathrm{w}=\frac{1}{\mathrm{z}^{2}}$? Justify.

