Seat No. : _____

13E-109 May-2015 M.Sc., Sem.-II 409 : Mathematics (Complex Analysis – II)

Time : 3 Hours]

1. (a) Suppose z_1 is a point inside the circle of convergence $|z - z_0| = R$ of a power

series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$. If $R_1 = |z_1 - z_0|$, show that this power series converges uniformly in the closed disk $|z - z_0| \le R_1$. Also show that the above power series represents a continuous function S(z) at each point inside the circle of convergence $|z - z_0| = R$

OR

Suppose f is analytic on an open disk $|z - z_0| < R_0$. Show that f(z) has the series representation.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad \left(\left| z - z_0 \right| < R_0 \right)$$

where $a_n = \frac{f^n(z_0)}{n!}$.

(b) Answer any **two** of the following briefly :

- (i) Specifying the domains, give two Series Expansions in powers of z for the function $f(z) = \frac{1}{(z-2)(1-z)}$.
- (ii) Specifying the domains, give two Laurent series Expansions in powers of z for the function $f(z) = \frac{1}{z(1+z^2)}$.
- (iii) When do you say that $\lim_{n \to \infty} z_n = z$? Show that $\lim_{n \to \infty} z_n = z$ if and only if $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$.

13E-109

P.T.O.

[Max. Marks : 70

7

- (c) Answer **all** of the following very briefly :
 - (i) Represent $f(z) = 1 + z^2$ in powers of z 5.
 - (ii) Find the Maclaurin Series Expansion of $f(z) = \frac{z}{z^4 + 9}$ which is valid in $|z| < \sqrt{3}$.
 - (iii) Discuss the phrase : "Circle of Convergence".
- 2. (a) Describe three types of isolated singular points with an illustration of each type. OR
 Show that an isolated singular point z₀ of a function f is a pole of order m if and only if f(z) can be written in the form f(z) = φ(z)/((z z₀)^m) where φ(z) is analytic and non-zero at z₀. Also show in this case that Res that Res that Res the transformed f(z) = φ(m-1)(z₀)/((m-1)!).

 (b) Answer any two of the following briefly :
 - $D_{\text{res}} \log z = \pi + 2i$
 - (i) Show that $\operatorname{Res}_{z=i} \frac{\operatorname{Log} z}{(z^2+1)^2} = \frac{\pi+2i}{8}$
 - (ii) Write the principal parts for the following functions at their isolated singular points, also assert the type of the singularity.
 - (I) $\frac{\cos z}{z}$ (II) $\frac{1}{(2-z)^3}$

(iii) Suppose that
$$z_0 = \sqrt{2}e^{i\frac{\pi}{4}} = 1 + i$$
. Find $\underset{z=z_0}{\text{Res}} \frac{z}{z^4 + 4}$

- (c) Answer all of the following very briefly :
 - (i) Find $\operatorname{Res}_{z=0}^{\frac{1}{z^2}}$.
 - (ii) Find the value of the integral $\int_{|z|=1} \exp\left(\frac{1}{z^2}\right) dz.$
 - (iii) Describe all the singular points of $\frac{1}{\sin(\frac{\pi}{z})}$. Which of these are isolated

singular points and which are not ?

 (a) State and prove Liouville's theorem. Derive, after carefully stating, the Fundamental Theorem of Algebra.

OR

Suppose f(z) is analytic and $|f(z)| \le |f(z_0)|$ on $|z - z_0| < \epsilon$. Show that f is constant throughout the neighbourhood.

13E-109

3

7

4

- Answer any **two** of the following briefly : (b)
 - Suppose that f(z) is entire and that the harmonic function u(x, y) = Re[f(z)](i) has an upper bound; that is $u(x,y) \le u_0$ for all points (x, y) in the xy plane. Show that u(x, y) must be constant throughout the plane.
 - Let $f(z) = (z i)^2$ and R be the closed triangular region determined by 0, -1 (ii) and - 2i. Give geometric argument and determine the points on R where the maximum and minimum of |f(z)| occurs.
 - Suppose $f(z) \neq 0$ is continuous on a closed region R. Show that |f(z)| has a (iii) minimum value m in R which occurs on the boundary of R and never in the interior.
- Answer **all** of the following very briefly : (c)
 - Is the function sin $z, z \in \mathbb{C}$ a bounded function? Justify. (i)
 - What are the maximum and minimum values of f(z) = |exp z| on the (ii) rectangular region R described by $0 \le x \le 1$, $0 \le y \le \pi$? Where are they attained ?
 - Is it true that |f(z)| can have its minimum value at an interior point of R? (iii) Justify.
- State the appropriate assumption of Jordan's lemma. Under these assumptions, 4. (a) show that :

$$\lim_{R \to \infty} \int_{C_R} f(z) e^{iaz} dz = 0$$

Evaluate the integral
$$\int_{0}^{0} \frac{x^2 dx}{(x^2 + 9)(x^2 + 4)^2}$$
 giving all the details. 7
Answer any **two** of the following briefly : 4

Answer any **two** of the following briefly : (b)

 ∞

Giving the main steps only and using residue theory, show that (i) ∞

$$\int_{0}^{\infty} \frac{x \sin 2x}{x^2 + 3} \, \mathrm{d}x = \frac{\pi}{2} \exp\left(-2\sqrt{3}\right)$$

Giving the main steps only and using residue theory, show that (ii) ∞

P.V.
$$\int \frac{x \sin x}{x^2 + 2x + 2} dx = \frac{\pi}{e} (\sin 1 + \cos 1)$$

(iii) Giving the main steps only and using residue theory, show that

$$\int_{0} \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

13E-109

3

P.T.O.

- (c) Answer **all** of the following very briefly :
 - (i) Discuss the Phrase: "Winding Number".
 - (ii) Calculate $\Delta_C \arg f(z)$ where C is |z| = 1 and $f(z) = z^2$.
 - (iii) Define the improper integral $\int_{-\infty}^{\infty} f(x) dx$ in two different ways. Show that the two definitions are not equivalent.
- (a) State the conditions under which f(z) and f(z) + g(z) have the same number of zeros counting multiplicities inside a simple closed contour C. Derive the Fundamental Theorem of Algebra using this result.

OR

Define very carefully Möbius Transformation as a bijection from the extended complex plane onto the extended complex plane. Find explicitly the inverse of a Möbius Transformation and state clearly as to why it is also a Möbius Transformation. Also show that composition of two Möbius Transformations is also a Möbius Transformation.

- (b) Answer any **two** of the following briefly :
 - (i) Find the linear fractional transformation T which maps 1, 0, -1 onto i, ∞ , 1 respectively.
 - (ii) Find the linear fractional transformation T which maps –i, 0, i onto l, i, 1 respectively.
 - (iii) Determine the number of roots (counting multiplicities) of the polynomial equation $z^5 + 3z^3 + z^2 + 1 = 0$ inside the circle |z| = 2.

(c) Answer **all** of the following very briefly :

- (i) Find the winding number of the image of |z| = 1 under the map $f(z) = \frac{(2z-1)^7}{z^3}$.
- (ii) Give an example of Möbius Transformation which has exactly one fixed point.
- (iii) What is the winding number of the image of the unit circle under the map $w = \frac{1}{z^2}$? Justify.

13E-109

4

7