Seat No. : _____

13E-111 May-2015 M.Sc., Sem.-II 409 : Chemistry (Physical Chemistry)

Time : 3 Hours]

[Max. Marks: 70

Instructions : (1) All questions carry equal marks.

- (2) Necessary constants : $N = 6.022 \times 10^{23} \text{ mole}^{-1}$ $k = 1.38 \times 10^{-16} \text{ ergs} \cdot \text{K}^{-1} = 1.38 \times 10^{-23} \text{ J K}^{-1}$ $h = 6.626 \times 10^{-27} \text{ ergs} \cdot \text{sec.} = 6.626 \times 10^{-34} \text{ J} \cdot \text{sec}$ $C = 2.998 \times 10^{10} \text{ cm} \cdot \text{sec}^{-1} = 2.998 \times 10^8 \text{ m} \cdot \text{sec}^{-1}.$ F = 96500 C $R = 8.314 \times 10^7 \text{ ergs} \cdot \text{K}^{-1} \text{ M}^{-1}$ $= 8.314 \text{ J K}^{-1} \text{ M}^{-1}$ $= 1.987 \text{ Cal} \cdot \text{K}^{-1} \text{ M}^{-1}$
- 1. (a) Define thermodynamic probability. Derive an equation for Boltzmann's most probable distribution. 7

OR

What is partition function ? Derive an equation for rotational partition function.

7 Discuss permutation and combination. (b) OR Derive an equation for vibrational partition function. 4 (i) Calculate the translational partition function for 1 mole of nitrogen at 2 (ii) atmosphere pressure at 300 °K, assuming the gas to behave ideally. The following data's are given : 3 Atomic weight of Nitrogen = 14.008 $N = 6.022 \times 10^{23}$ $k = 1.38 \times 10^{-16} \text{ erg} / \text{degree} / \text{mole}$ $h = 6.624 \times 10^{-27} \text{ erg} \cdot \text{sec.}$ R = 82.06 c.c. atm / degree/ mole 13E-111 1 P.T.O.

2.	(a)	Discuss the Fermi gas model of atomic nucleus.	7
		Discuss the use of radio isotope as tracers.	
	(b)	(i) Write a note on reaction cross section.	4
	(-)	(ii) Write a note on nuclear binding energy.	3
		OR	
		(i) Write a note on linear accelerators.	4
		(ii) Calculate binding energy per nucleon for ${}_{2}^{4}$ He. whose atomic mass is 4.0026	
		a.m.u.	
		Mass of proton = 1.00783 a.m.u.	
		Mass of neutron = 1.00870 a.m.u.	
		1 a.m.u. = 931.4 MeV	3
3.	(a)	What is Cationic Polymerization ? Discuss Kinetics of Cationic Polymerization. OR	7
		Discuss the kinetics of free radical chain polymerization.	
	(b)	(i) Discuss any one method for the determination of molecular weights of polymers.	4
		(ii) Intrinsic viscosity of a polymer in chloroform at 25 °C $[\eta] = 4.1686$ dl/gm. Relation between intrinsic viscosity and molecular weight is given below. $[\eta] = 2.3 \times 10^{-3} \cdot M^{0.65}$	
		Calculate molecular weight of polymer. OR	3
		(i) Write a note on polycondensation.	4
		(ii) There are 100 polymer molecules of molecular weight 1000, 200 molecules of molecular weight 10000 and 200 molecules of molecular weight 100000.	
		Calculate \overline{M}_n .	3
4.	(a)	Determine dissociation constant of monobasic acid by conductometry. OR	7
		How will you determine dissociation constant of dibasic acid by potentiometric method ?	
	(b)	Derive an equation of polarographic wave. OR	7
		Explain the origin and characteristics of various current produced in polarography.	
13E	-111	2	

- 5. Answer in brief (**one** mark each) :
 - (1) What is dimension of partition function ?
 - (2) At absolute zero temperature, what is the value of partition function.
 - (3) Define Statistical Thermodynamics.
 - (4) Define Nuclear Reaction.
 - (5) Define Half-life period of radioactive an element.
 - (6) Define Nuclear fission.
 - (7) What is relation between viscosity and fluidity ?
 - (8) What is Polydispersity Index (P.D.I.)?
 - (9) Define Initiators.
 - (10) Define Zeta potential.
 - (11) Define Over Voltage.
 - (12) What is unit of cell constant ?
 - (13) Ostwald dilution law is applicable for which type of electrolyte solution ?
 - (14) What is SI unit of viscosity ?

13E-111

13E-111