\qquad

BG-117

May-2015
M.Sc., Sem.-II

407 : Chemistry
(Inorganic Chemistry)
Time : 3 Hours]
[Max. Marks : 70

Instruction : Figure to the right indicate marks.

1. (a) For the cyclopentadienyl cation, find out $E \pi$, π-bond energy, delocalization energy, Electron \& Charge Densities and π-bond order.
Given : $\Psi_{1}=0.288 \mathrm{P}_{1}+0.5 \mathrm{P}_{2}+0.577 \mathrm{P}_{3}+0.5 \mathrm{P}_{4}+0.288 \mathrm{P}_{5}$,

$$
\Psi_{2}=0.5\left(\mathrm{P}_{1}+\mathrm{P}_{2}-\mathrm{P}_{4}-\mathrm{P}_{5}\right), \Psi_{3}=0.577\left(\mathrm{P}_{1}-\mathrm{P}_{3}+\mathrm{P}_{5}\right)
$$

OR
(a) Discuss Walsh diagram for XH_{2} type of the molecule.
(b) Explain the Bent's rule. Discuss its effects on the bond distance and bond angles on the different fluoromethanes.

OR

(b) Explain the terms band theory of solids and fermi level.
2. (a) In a molecule $\left(\mathrm{AB}_{5} ; \mathrm{C}_{4 \mathrm{v}}\right)$, central atom A has s, p and d orbitals, what are the orbitals available on A which will form σ bonds with B ?

OR

(a) Write the different steps involved in working out the molecular orbitals in AB_{6} type molecule.
(b) Assign the shape and point group of the following XY_{3} type molecules with the help of their IR and Raman spectral data.

IR Active vibrations $\left(\mathrm{cm}^{-1}\right)$
$\mathrm{PCl}_{3}: 190,258,484,511$
$\mathrm{ClF}_{3}: 326,364,434,528,703,752$
$\mathrm{BF}_{3}: 480,691,1454$

Raman Active Vibrations (cm^{-1}) 190,258,484,511
326,364,434,528,703,752
888,480,1454

OR

(b) In a molecule $\left[\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}_{2}\right],\left(\mathrm{C}_{2} \mathrm{v}\right)$, find out the symmetries of stretching vibrations only for CO. Assign which will be IR active and which will be Raman active. Will there be any coincidence ?
3. (a) Discuss the structure and bonding in OMC of Acetylene.
(a) Explain the structure and bonding in η^{4}-OMC considering butadiene.
(b) Define organometallic compound, their classification and properties of OMC of transition metals.

OR

(b) Describe the use of OMC as catalyst in hydrogenation.
4. (a) Discuss the factors affecting the rate of reaction.

OR

(a) Explain Tunneling effect.
(b) Discuss "Marcus-Hush Theory" and derive Marcus Equation.

OR

(b) Write a note on 'Hydrated Electron'.
5. Answer the following :
(i) Give one example of a molecule of the type $\mathrm{AX}_{5} \mathrm{E}_{1}$ according to VSEPR theory.
(ii) Define Charge Density.
(iii) Which orbital will be HOMO for BeH_{2} molecule according to Walsh diagram?
(iv) Why the valance state ionization potential of electrons of 2 p orbital is lower than that of 2 s orbital for nitrogen atom?
(v) How would you distinguish between IR and Raman vibrations if a molecule possess centre of symmetry?
(vi) In a molecule $\left[\mathrm{M}(\mathrm{CO})_{3} \mathrm{~L}_{3}\right],\left(\mathrm{C}_{3} \mathrm{v}\right)$, the symmetries of stretching vibrations are $\mathrm{A}_{1}+\mathrm{E}$. How many bands will be active in both i.e. IR and Raman ?
(vii) What do you understand about the symmetry when a transition is polarized in Raman spectrum?
(viii) Define Mutual exclusion rule.
(ix) What is the oxidation state of Cr in di-benzene chromium?
(x) Give the name of catalyst used in polymerization reaction of alkenes.
(xi) Write the use of 'Silicon-oil'.
(xii) When three metal atoms are within the bonding distance of one carbon atom, they are called \qquad type of complex.
(xiii) Give the formula for nuclear factor in Marcus equation.
(xiv) Give the order of energy of nucleophilic attraction.

