Seat No. : \qquad

N12-122

November-2014
M.Sc., Sem.-III

501 : Mathematics
(Functional Analysis - I)
Time : 3 Hours]
[Max. Marks : 70

1. (a) Attempt any ONE :
(1) Let M and N be subspaces of a vector space V , such that $\mathrm{V}=\mathrm{M}+\mathrm{N}$. Show that $\mathrm{V}=\mathrm{M} \oplus \mathrm{N}$ if and only if $\mathrm{M} \cap \mathrm{N}=\{0\}$.
(2) Let B_{1} and B_{2} be any two bases of a linear space V. Prove that B_{1} and B_{2} have the same number of elements.
(b) Attempt any TWO :
(1) If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is non-singular linear transformation and B is a basis in V , then show that $\mathrm{T}(\mathrm{B})$ is a basis in V .
(2) Is $\{\mathrm{f} \in \mathrm{C}[0,1] ; \mathrm{f}$ is a polynomial of degree 3$\}$ a subspace of $\mathrm{C}[0,1]$? Justify!
(3) Prove or disprove: The transformation $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)$ $=\left(x_{1}+x_{2}, 0\right)$ is linear.
(c) Answer in brief :
(1) Give two different bases for R^{3}.
(2) If E is idempotent then, show that $\mathrm{I}-\mathrm{E}$ is idempotent.
(3) If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is a linear transformation, is it true that T^{2} is also linear? Justify!
2. (a) Attempt any ONE :

7
(1) Let M be a closed subspace of a Banach space N . Prove that the quotient space N / M is complete in quotient norm.
(2) Show that $\|x\|_{\infty}=\sup \left\{\left|x_{n}\right|\right\}$ defines a norm on 1_{∞}.
(b) Attempt any TWO :
(1) Show that the norm is continuous.
(2) Draw the sets $\mathrm{S}_{\mathrm{i}}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathrm{R}^{2} ;\|x\|_{\mathrm{i}}=1\right\}$ for $\mathrm{i}=1$ and 2 .
(3) Prove: If T and S are in $\beta(\mathrm{N})$, then $\|\mathrm{TS}\| \leq\|\mathrm{T}\|\|\mathrm{S}\|$.
(c) Answer in brief :
(1) Find the norm $\|T\|$, if $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $\mathrm{T}\left(x_{1}, x_{2}\right)=\left(0, x_{1}+x_{2}\right)$.
(2) State Holder's inequality.
(3) Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}^{\prime}$ be a linear transformation. Prove that if T is continuous at origin, then it is continuous everywhere.
3. (a) Attempt any ONE :
(1) Prove : $l_{p}^{*}=l_{q}$ where $1<p<2$ and $\frac{1}{p}+\frac{1}{q}=1$.
(2) Prove : For $x \in \mathrm{~N}$, the function F_{x} defined on N^{*} by $\mathrm{F}_{x}(\mathrm{f})=\mathrm{f}(x),\left(\mathrm{f} \in \mathrm{N}^{*}\right)$ is in $\mathrm{N}^{* *}$. Also, show that $\left\|\mathrm{F}_{x}\right\|=\|x\|$.
(b) Attempt any TWO :
(1) If N is finite dimensional then show that N^{*} is also finite dimensional.
(2) Define separable space and give one example of it.
(3) If M is a closed subspace of N and $x \notin \mathrm{M}$, then show that there exists $\mathrm{f} \in \mathrm{N}^{*}$ such that $\mathrm{f}(\mathrm{M})=0$ and $\mathrm{f}(x) \neq 0$.
(c) Answer in brief :
(1) Is it true that every non complete nls is non reflexive?
(2) State the Hahn Banach theorem.
(3) State what is the dual space of c_{0}.
4. (a) Attempt any ONE :
(1) State and prove closed graph theorem.
(2) Prove : A subset X of a nls N is bounded if and only if $f(X)$ is a bounded set in R , for each f in N^{*}.
(b) Attempt any TWO :
(1) Let T be invertible $\beta(N)$. Show that T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
(2) Prove : If P is a projection on a Banach space B , then range of P and null space of P are closed in B .
(3) Prove : If T and S are in $\beta(N)$, then (TS $)^{*}=S^{*} T^{*}$.
(c) Answer in brief :
(1) Define reflexive space.
(2) Show that the conjugate of an identity operator is an identity operator.
(3) Prove : If T is in $\beta(\mathrm{N})$, then T^{*} is linear.
5. (a) Attempt any ONE :
(1) If M is a proper closed subspace of a Hilbert space H , then show that there exists a non-zero vector z_{0} in H such that $\mathrm{z}_{0} \perp \mathrm{M}$.
(2) Prove : A closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
(b) Attempt any TWO :
(1) Show that if M is a closed subspace of H, then M^{\perp} is also a closed subspace of H .
(2) Prove: The Parallelogram Law in a Hilbert space.
(3) Show that the ortho-normal set $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{\mathrm{n}}, \ldots\right\}$ in l_{2} is complete.
(c) Answer in brief :
(1) State Schwarz inequality.
(2) Is every inner product space, a normed linear space ? Why ?
(3) Prove : If $T \subset S$, then $S^{\perp} \subset T^{\perp}$.

