Seat No. :

N12-122

November-2014

M.Sc., Sem.-III

501 : Mathematics

(Functional Analysis – I)

Time : 3 Hours]

1.

2.

- Attempt any **ONE** : (a) Let M and N be subspaces of a vector space V, such that V = M + N. (1)Show that $V = M \oplus N$ if and only if $M \cap N = \{0\}$. (2) Let B_1 and B_2 be any two bases of a linear space V. Prove that B_1 and B_2 have the same number of elements. (b) Attempt any **TWO** : If $T: V \rightarrow V$ is non-singular linear transformation and B is a basis in V, (1)then show that T(B) is a basis in V. Is $\{f \in C[0, 1]; f \text{ is a polynomial of degree 3}\}$ a subspace of C[0, 1]? (2)Justify ! Prove or disprove : The transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x_1, x_2, x_3)$ (3) $= (x_1 + x_2, 0)$ is linear. Answer in brief : (c) (1) Give two different bases for \mathbb{R}^3 . (2) If E is idempotent then, show that I - E is idempotent. If $T: V \rightarrow V$ is a linear transformation, is it true that T^2 is also linear ? (3) Justify ! Attempt any **ONE** : (a) Let M be a closed subspace of a Banach space N. Prove that the quotient (1)space N/M is complete in quotient norm. (2)Show that $||x||_{\infty} = \sup \{|x_n|\}$ defines a norm on 1_{∞} . Attempt any TWO: (b) (1)Show that the norm is continuous. Draw the sets $S_i = \{x = (x_1, x_2) \in \mathbb{R}^2 ; \|x\|_i = 1\}$ for i = 1 and 2. (2)(3) Prove : If T and S are in $\beta(N)$, then $||TS|| \le ||T|| ||S||$. Answer in brief: (c) (1) Find the norm ||T||, if $T : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $T(x_1, x_2) = (0, x_1 + x_2)$. State Holder's inequality. (2)
 - Let $T: N \rightarrow N'$ be a linear transformation. Prove that if T is continuous at (3) origin, then it is continuous everywhere.

1

N12-122

P.T.O.

[Max. Marks: 70

7

4

3

7

4

3

- 3. (a) Attempt any **ONE** :
 - (1) Prove : $l_p^* = l_q$ where $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$.
 - (2) Prove : For $x \in N$, the function F_x defined on N* by $F_x(f) = f(x)$, $(f \in N^*)$ is in N**. Also, show that $||F_x|| = ||x||$.

(b) Attempt any **TWO** :

- (1) If N is finite dimensional then show that N^* is also finite dimensional.
- (2) Define separable space and give one example of it.
- (3) If M is a closed subspace of N and $x \notin M$, then show that there exists $f \in N^*$ such that f(M) = 0 and $f(x) \neq 0$.
- (c) Answer in brief :
 - (1) Is it true that every non complete nls is non reflexive ?
 - (2) State the Hahn Banach theorem.
 - (3) State what is the dual space of c_0 .

4. (a) Attempt any **ONE** :

- (1) State and prove closed graph theorem.
- (2) Prove : A subset X of a nls N is bounded if and only if f(X) is a bounded set in R, for each f in N*.
- (b) Attempt any **TWO**:
 - (1) Let T be invertible $\beta(N)$. Show that T* is invertible and $(T^*)^{-1} = (T^{-1})^*$.
 - (2) Prove : If P is a projection on a Banach space B, then range of P and null space of P are closed in B.
 - (3) Prove : If T and S are in $\beta(N)$, then $(TS)^* = S^*T^*$.

(c) Answer in brief :

- (1) Define reflexive space.
- (2) Show that the conjugate of an identity operator is an identity operator.
- (3) Prove : If T is in $\beta(N)$, then T* is linear.

5. (a) Attempt any **ONE** :

- (1) If M is a proper closed subspace of a Hilbert space H, then show that there exists a non-zero vector z_0 in H such that $z_0 \perp M$.
- (2) Prove : A closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
- (b) Attempt any **TWO** :
 - (1) Show that if M is a closed subspace of H, then M^{\perp} is also a closed subspace of H.
 - (2) Prove : The Parallelogram Law in a Hilbert space.
 - (3) Show that the ortho-normal set $\{e_1, e_2, e_3, \dots, e_n, \dots\}$ in l_2 is complete.
- (c) Answer in brief :
 - (1) State Schwarz inequality.
 - (2) Is every inner product space, a normed linear space ? Why ?
 - (3) Prove : If $T \subset S$, then $S^{\perp} \subset T^{\perp}$.

7

4

7

3

4

7

3

3

4