Seat No. : _____

N12-121

November-2014 M.Sc. (CBCS) Sem.-III STA-501 : Statistics (Testing of Hypothesis)

Time : 3 Hours]

Instructions :	(1)	All questions are of equal marks.
----------------	-----	-----------------------------------

- (2) Scientific calculator is permitted to use.
- (3) Statistical Tables will be supplied on request.
- 1. (a) Define randomized test function. State and prove sufficient part of NP lemma for randomized test.

OR

Prove or disprove : The test obtained by NP lemma is essentially unbiased.

(b) Let X and Y are two independent normal variates with mean θ and 2θ respectively with common variance 1. Derive most powerful test of size α to test H : $\theta = \theta_0$ versus K : $\theta = \theta_1$, $\theta_1 > \theta_0$. Obtain also power of the test when $\theta_1 = 3$, $\theta_0 = 2$ and $\alpha = 0.05$.

OR

Let X be a random variable having the pmf f or g. Derive most powerful test of size α to test

H : $X \sim f = \frac{1}{2^{x+1}}$, $x = 0, 1, 2, \dots$ versus K : $X \sim g = \frac{1}{4} \left(\frac{3}{4}\right)^x$, $x = 0, 1, 2, \dots$ Also obtain power of the test.

2. (a) Define MLR property of a distribution. State an exponential family of distributions. Obtain sufficient condition for the distribution to possess an MLR property. Verify it for the distribution having pdf $f(x, \theta) = \theta x^{\theta - 1}, 0 < x < 1, \theta > 0$.

OR

If the pdf $f(x, \theta)$ has MLR property in T(x); show that there exist a UMP test for testing $H : \theta \le \theta_0$ versus $K : \theta > \theta_0$ based on T(x).

(b) Obtain UMP test for testing H : θ = θ₀ versus K : θ ≠ θ₀ based on random sample of size n taken from uniform U(0, θ), θ > 0 distribution. Hence derive (1 – α)100% UMA confidence interval for θ.

OR

Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with pdf $f(x, \theta) = \theta x^{\theta - 1}, 0 < x < 1, \theta > 0$. Obtain UMPU test for testing $H : \theta = \theta_0$ versus $K : \theta \neq \theta_0$. Hence derive $(1 - \alpha)100\%$ UMAU confidence interval for θ .

3. (a) Discuss the test procedure for testing the hypothesis in the presence of nuisance parameter(s) with example.

OR

Let $X_1, X_2, ..., X_n$ be a random sample from N(μ, σ^2), distribution. To test H : $\mu = \mu_0$ versus K : $\mu \neq \mu_0$ derive LRT of size α .

(b) Describe SPRT procedure. Obtain relation between stopping bounds and strengths of an SPRT.

OR

Prove that SPRT eventually terminates with probability one.

4. (a) Let $X_1, X_2, ..., X_n$ be a random sample from the uniform U(0, θ), $\theta > 0$ distribution. Derive SPRT to test H : $\theta = \theta_0$ versus K : $\theta = \theta_1, \theta_1 > \theta_0$.

OR

Let $X_1, X_2, ..., X_n$ be a random sample from N(μ , 4) distribution. Obtain SPRT to test H : $\mu = -1$ versus K : $\mu = 1$. Find also E(N) under H and K.

(b) Describe fully Kolmogorov – Smirnov test.

OR

Describe fully Kruskal - Wallis test.

N12-121

- 5. Answer the following :
 - (i) Define size and power of the randomized test.
 - (ii) Define UMP test.
 - (iii) State the necessary condition for the existence of UMP test with two sided alternative.
 - (iv) Define UMPU test.
 - (v) Define boundary set.
 - (vi) Define similar region test.
 - (vii) State asymptotic distribution of $-2\log\lambda(x)$ in LRT for testing $H : \theta = \theta_0$ versus $K : \theta = \theta_1$.
 - (viii) The pdf $f(x, \theta) = \theta/x^2, 0 < \theta < x < \infty$
 - (A) possess MLR property in $T(x) = X_{(1)}$
 - (B) possess MLR property in $T(x) = X_{(n)}$
 - (C) possess MLR property in $T(x) = \sum_{i=1}^{n} X_i^2$
 - (D) does not possess MLR property
 - (ix) Let $X \sim N(0,1)$ under H and N(0, 2) under K. Suppose the $\varphi(x) = 1$, if $|x| \ge 1$ and zero otherwise, then find size and power of the test.
 - (x) Say TRUE or FALSE: If UMP test exist LRT always provide it.
 - (xi) State Wald's identity of an SPRT.
 - (xii) Find the value of the test statistic involved in the Kolmogorov Smirnov test to test whether the random sample {2.5, 3.9, 0.8} is taken from U(0, 4) uniform distribution or not.

N12-121

N12-121