Seat No. : _____

AF-130

April-2023

B.Sc., Sem.-VI

CC-311 : Mathematics

(Convex Analysis and Probability Theory)

Time : 2¹/₂ Hours] [Max. Marks: 70 **Instructions :** Notations are usual everywhere. (i) (ii) Figures to the right indicate marks of the question/Sub-question. Define a convex set and prove that $G \cap H$ is convex if G and H are convex sets. 9 1. (a) (b) Describe convex hull of a set, giving a suitable example of convex hull of a subset of \mathbb{R}^2 . 9 OR 9 (a) Define concave functions on an interval I. Also show that the function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = x^3$ is a convex function on $[0, \infty)$ whereas concave on $(-\infty, 0]$. If I is an interval containing more than one point and $f: I \rightarrow R$ is a differential (b) function then prove that if f' is non-negative throughout I then f is monotonically increasing on I. 9 2. (a) Define terms : convex set, non-convex sets, affine set. Also explain each of them by an example. 9 State and Prove the Bivariate Intermediate Value Theorem. 9 (b) OR (a) Using the addition rule of probability for two events A and B defined on a finite sample space such that P[A] = 0.45, P[B] = 0.55 and P[AUB] = 0.65, then find the probability of following events : (i) \overline{A} , (ii) $\overline{A} \cap \overline{B}$, (iii) $\overline{A \cup B}$, (iv) $A \cap \overline{B}$. 9 (b) Two balanced dice are thrown once, simultaneously. Find the probability of the following events : 9 (i) 2 on a first die and even number on a second die. Odd number on first die and a 3 on second die. (ii) (iii) Sum of numbers on two dice is 8. (iv) Sum of numbers on two dice is divisible by 5. **AF-130** 1 **P.T.O.**

3. (a) If a random variable X follows binomial distribution with parameters n and p, then, state the value of E(X) and V(X) respectively.

A X follows binomial distribution with parameters n = 27 and p = 1/3, state the value of mean and variance. Also, find P(X = 0), $P(X \le 2)$.

(b) A random variable X follows Poisson distribution with parameter m, such that P(X = 2) = P(X = 3), then find parameter m and also find P(X = 0), P(X < 2), P(X > 2).

OR

- (a) For a normal distribution, state its probability distribution function. Also, state mean, variance, mode and median of normal distribution.
- (b) State the probability mass function of Poisson distribution. State its mean and variance. Also, state the situations, where Poisson distribution is applied. If a random variable X has Poisson distribution with mean 2, find P(X = 1), P(X < 2), P(1 < X < 4).

$$\{e^{-1} = 0.368, e^{-2} = 0.135, e^{-3} = 0.050\}$$

- 4. Attempt any **Eight** of the following questions in short :
 - (a) Define a Euclidean space.
 - (b) Define following terms :
 - (i) Hyper Plane
 - (ii) Convex combination
 - (c) Explain convex cone with figure.
 - (d) State the Intermediate Value Theorem.
 - (e) Define Convex and concave functions on an interval I.

(f) If A = { $(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 5$ }, then find the convex hull of A.

- (g) Two coins are tossed, find the probability that exactly two heads appear.
- (h) If A and B be two events, then, give your comments on following statements.
- (i) If $P(A \cap B) = P(A)P(B)$ then, events A and B are independent events.
- (j) If $A = \phi$, then value of P(A | B) more than 0.
- (k) State Bayes' Rule of probability.
- (1) For two mutually exclusive events A, B on a finite sample space S,

 $P(\overline{A} | B) = 1$. Do you agree ? If yes, justify.

16

9

9

9

9

Seat No. : _____

AF-130

April-2023

B.Sc., Sem.-VI CC-311 : Mathematics (Operations Research)

Time : 2¹/₂ Hours]

Instructions : (1) All the questions are compulsory.

- (2) Notations and terminologies are standard.
- (3) Figure to the right indicates the full marks.

1. (a) Explain Economic Order Quantity (EOQ) model with finite replenishment rate. 9

(b) A company uses rivets at a rate of 5000 kg. per year, rivets costing ₹ 2 per kg. It costs ₹ 20 to place an order and the carrying cost of inventory is 10% per annum. How frequently should order for rivets be placed and how much ?
9

OR

- (a) Explain Order-Level, Lot-Size System model. Find minimum cost for this model and optimum shortage level.
- (b) The demand for an item in a company is 8000 units per year, and the company can produce the item at a rate of 3000 per month. The cost of one set-up is ₹ 500 and the holding cost of one unit per month is ₹ 0.15. The shortest cost of one unit is ₹ 20 per month. Determine the optimum manufacturing quantity and the number of shortages. Also determine the manufacturing time and the time between two set-ups.

2. (a) Explain basic difference between PERT and CPM.

(b) Consider the following data regarding the project.

Activity	А	В	С	D	E	F	G	Н	Ι
Immediate Predecessor	-	A	В	В	C	D	C	E, F	G, H
Duration	5	7	2	3	1	2	1	3	10

Find the critical path.

OR

(a) Construct the project network. Find total and free float for each non-critical activity.

Act.	A	B	C	D	E	F	G	Η	Ι	J	Κ	L	Μ	Ν	0	Р	Q
Imm. Pred.	—	_	_	Α	A	B	B	C	С	D	Е	F	G	Η	Ι	J, K, L	M, N, O
Duration	4	8	5	4	5	7	4	8	3	6	5	4	12	7	10	5	8

(b) Consider the following project. Draw a network diagram.

Activity	Α	В	C	D	Е	F	G	Η	Ι	J	K	L
Predecessors	—	_	_	А	Α	Е	В	В	D, F	С	H, J	G, I, K

3

[Max. Marks : 70

9

9

9

9

9

9

- 3. (a) Explain dominance principal.
 - Solve the following game by simplex method. (b)

	Player B								
		B ₁	B ₂	B ₃					
Diaman A	A ₁	1	-1	-1					
Player A	A ₂	-1	-1	3					
	A ₃	-1	2	-1					
			OR						

- Obtain the formula to find optimum strategies in 2×2 two-person zero sum game (a) with strategy.
- Solve the following game : (b)

	Player B									
		B ₁	B ₂	B ₃	B ₄					
Diaman A	A ₁	-1	2	3	0					
Player A	A ₂	-4	-1	-1	0					
	A ₃	-1	1	1	-4					
	A ₄	4	-1	2	-7					

4. Attempt any **eight** in short :

- (1) List the costs which are involved in inventory problem.
- (2) Define : Lead time, Demand.
- What is the carrying cost in EOQ model with finite replacement rate if production (3) rate = demand rate ?
- (4) Given the following information, develop a network.

Activity	Immediate Predecessor
А	_
В	_
С	А
D	В

- (5) Define : Project.
- Define : Two-person zero sum game. (6)
- Define : Free Float (7)
- Solve the following game. (8)

	Player B								
		B ₁	B ₂	B ₃	B ₄				
Diaman A	A ₁	8	-2	9	-3				
Player A	A ₂	6	5	6	8				
	A ₃	-2	4	-9	5				
~ · ·	1								

- (9) Define : A mixed strategy.
- (10) List any two methods which are used to solve the games without saddle point.
- (11) Define : Free float
- (12) Define : Inventory.

16

9 9